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Knowledge of node positions is required in most 
WSN applications to interpret results. Sensor data 
are meaningless unless stamped with the location of 
the sensor that collected it. 

The neural network formalism of Self-Organizing 

Maps is used to implement a localization service. 

The scheme works using connectivity information 
only. Since it does not require range measure-
ments (range-free) or anchor nodes (anchor-free), 
it is suitable for resource-constrained networks. 

The solution proposed achieve good localization 
results in networks with low connectivity, which 
are harder to localize, and in presence of irregular 
radio pattern or anisotropic deployment. 

The scheme has low computation and communi-
cation overheads. The algorithm can be executed 
on nodes with limited hardware resources . 

A Self-Organizing Map (SOM) is a neural network 
with the neurons arranged in a regular 2D lattice. 

The map is trained using multiple iterations of a three 
step algorithm: 

Sampling: a sample is extracted from 

the input set and compared with the 
map weights. 

Competition: the neuron whose 

weights are more similar to the input 
is the Best Matching Unit (BMU). 

Adaptation: the SOM weights are up-

dated. The level of adaptation is regu-
lated by a Gaussian shaped neighbor-
hood function centered on the BMU. 

Each weight vector represents the coordinates of a 
wireless node. The map is trained using random 
points drawn from an uniform 2D distribution. 

The hop-count distance between nodes is used to 
control the level of adaptation of the neurons.  

1000 to 2000 iterations executed to achieve a 
good approximation of node positions. 

 

 

Relative maps can be converted into absolute maps 
using the positions of at least three anchor nodes. 

Instead of using anchor node positions to convert vir-
tual maps, the SOM algorithm can be modified to use 

this information during the computation.  

Neurons corresponding to anchor nodes are initial-
ized with the true coordinates, which are never modi-
fied during the weights update. 

SOM3 and SOM4 use three and four anchor nodes. 
For networks with connectivity less than 10, the local-
ization error is reduced by 43% with respect to 
MDS localization. 

SOM Localization requires two steps:  

1.  Computing the hop-count distances (Dijkstra) 

2.  Training the SOM using multiple iterations. 

 

SOMs are able to learn the underlying features of the 
input space. Final weights are topologically ordered  
(adjacent neurons converge to similar values). 

SOMs can be used to solve 
the localization problem, 
which requires that radio 
neighbors are assigned to  
coordinates close in space. 

Node positions are computed 
by training a modified SOM 
where the weights represent 
2D coordinates. Radio 
neighbors are mapped on ad-
jacent position on the map. 

The SOM algorithm uses only connectivity informa-
tion: sensors are localized without need of range 
measurements or anchor nodes.                   

(Range-Free, Anchor-Free Localization). 

When no anchor nodes are used, results are arbi-
trarily scaled, translated, rotated or flipped. Node 

positions are expressed by Virtual Coordinates.  

Virtual Coordinates are useful to implement several 
network services, e.g. location-based queries, prox-
imity-based service discovery and  Geographical 

Routing. 

 

Simulation results in presence of irregular radio pat-
terns or anisotropic layouts show that the SOM 
scheme maintains good localization results. 

 

The SOM algorithm was used to implements a 
range-free, anchor-free localization scheme. 

Virtual coordinates generated by SOM are effective 
for location-aided routing. 

Accurate localization results for networks with low 
connectivity and in presence of irregular radio pat-
terns or anisotropic layouts. 

SOM localization is computationally feasible. 

Example: a 10 x 10 SOM trained with random samples from the 3D  RGB 
color space. After training, similar colors are mapped on nearby neurons. 
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Example:  node positions computed by the SOM algorithm 
for a 25 node WSN with regular layout . 
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Localization error in presence of irregular radio patterns 
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For each node, the actual radio range was 

drawn from the interval [0.4 - 1.6] R 
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Each neuron contains a 
weight vector. The 
weights, initialized with 
random values, will 
eventually store the in-
formation learned by the 
map. 

Neighborhood 
funct. h(·) Weight 
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At each iteration, the learning parameter η(n) and the width of the neighborhood function are 

decreased monotonically, allowing the map weights to converge to a stable configuration.  

156 sec 22 sec 3.42 KB 100 

102 sec 6 sec 1.48 KB 64 

62 sec 1 sec 0.42 KB 36 

1000 iter. Dijkstra Memory N. Nodes 

• MCU: MSP430 / 8 MHz 
• Ram: 10KB / Flash: 48KB 

Memory occupation and execution time on a TelosB board. 

Number of Nodes: 16, 25, 36, 64, 81, 100 

Communication Radius = {1.3, 1.6, 2.0, 2.2, 2.4}*R0 

Grid Perturbation σ = {0.1, 0.2, 0.3, 0.4, 0.5}*R0 

Degree of Irregularity - DOI = {0.0, 0.2, 0.4} 

Total Number of Networks = ~ 30’000 

SIMULATION PARAMETERS: 
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* Result based on 400 simu-
lated topologies. 

Sample Topologies 
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In our simulations the 
positions of four anchor 
nodes on the perimeter 
of the map were used to 
transform the relative 
maps. The localization 
error was compared to 
the results obtained us-
ing Multi-Dimensional 
Scaling (MDS). The error 
is relative to the commu-
nication radius R. 
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Delivery ratio of a greedy geo-routing scheme  

Simulation results show 
that the virtual coordi-
nates generated by 
SOM are effective when 
used for geographical 
routing. Delivery ratio 
and path length

*
 are 

close to the values ob-
tained using the true 
coordinates. 

*
graph not shown 

SOM achieved 
an average lo-
calization error 
of 0.35R for net-
works with ani-
sotropic layouts, 
with a 75% error 
reduction with 
respect to MDS

*
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Sample results for anisotropic layouts (SOM and MDS) 


