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Abstract

In sensor networks applications, localization is an essential service that computes

the node positions on the basis of a limited amount of initial information. The task

is particularly challenging in resource-constrained deployments typical of many real-

world applications, where nodes have reduced computational capabilities, do not have

hardware for range measurements and operates in sparse topologies. In this thesis

we propose a range-free, anchor-free solution that works using connectivity informa-

tion only. The approach, suitable for deployments with strict cost constraints, is

based on the neural network paradigm of Self-Organizing Maps (SOM). We present

a lightweight SOM-based algorithm to compute virtual coordinates that are effective

for location-aided routing. If absolute coordinates are required, this algorithm can

efficiently exploit information of few anchor nodes to compute absolute maps. Re-

sults of extensive simulations show improvements over the popular Multi-Dimensional

Scaling (MDS) scheme, especially for networks with low connectivity, which are in-

trinsically harder to localize, and in presence of irregular radio pattern or anisotropic

deployment. We analytically demonstrate that the proposed scheme has low computa-

tion and communication overheads; hence, making it suitable for resource-constrained

networks.

In the second part of this work, we introduce a directional antenna designed to

operates with COTS sensor nodes. After using experimental tests and theoretical

models to characterize the communication improvements, we implements a simple

algorithm that exploits the directivity of the antenna to estimate the angular position

of nearby nodes. Experimental results demonstrate that an inexpensive and compact

antenna can be used to derive angle information useful in solving the localization

problem.
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Chapter 1

Introduction

In the era of pervasive computing, position-awareness is rapidly becoming a key fea-

ture in many applications [1]. This trend is confirmed by the fast growth of the

Global Positioning System (GPS) that has recently invaded the consumer market.

Once restricted to military applications, GPS receivers are now common on cars,

trucks, PDAs and cell phones. With an estimated 14 million units sold in 2006 [11],

the success of this technology underlines the importance of locating people and things

in a world where computation and communication are becoming ubiquitous.

Position-awareness is also of primary importance in Wireless Sensor Networks

(WSN) [23], which is an enabling technology for pervasive computing. Consisting

of small sensors with wireless capabilities, these networks are easy to deploy and

represent a cost effective alternative to traditional wired systems. Typical applications

include environmental monitoring, asset tracking, surveillance and disaster relief [2].

In each of these cases, and in almost any other WSN application of practical interest,

knowledge of the node positions is required to correctly evaluate the network results.

For example, in a disaster relief scenario, a sensor network deployed “on the fly” needs

to provide search-and-rescue teams with location information necessary to quickly

arrive on the emergency scene.
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Given the importance of this information, several research efforts have focused

on incorporating location awareness in those applications where the use of GPS is not

a viable solution [31, 50]. In Chapter 2 we give a formal definition of the problem and

we introduce some background information that characterizes the computational com-

plexity of the solution. Since the localization problem is intrinsically hard to solve and

no efficient solutions exist for the general case, many heuristic-based algorithms have

been proposed over the past few year in the attempt to compute approximate, but still

useful, node coordinates. We review some of the most relevant localization schemes

in Chapter 3, giving a particular attention to “range-free” schemes (i.e. schemes that

do not rely on range measurements to recover the node positions). Although these

schemes are appealing because they can be implemented on simple sensor nodes with-

out dedicated hardware for range estimation, many of the proposed approaches rely

on a large number of anchor nodes (i.e. nodes at known positions) which limit the

applicability of the solution to real-case applications.

We also note that many of these localization schemes target unrealistically large

WSNs with high connectivity. While a few examples of such large, dense deployments

are being experimentally evaluated within the research community [5], a recent survey

[10] reveals that most of the future WSN applications will exploit small to medium

networks with less than 100 nodes. Contrary to other network services, a small number

of nodes and low connectivity are problematic for the existing localization schemes

since determining the sensor positions becomes intrinsically harder as the number of

constraints (e.g. range measurements or radio links) diminishes [28].

Motivated by these considerations, in Chapter 4 we define the characteristic of

a novel localization scheme that works without anchor nodes, does not rely on range

measurements and is designed to work on networks with low connectivity or irregular

topologies. This localization method, which is based on a neural network formalism

known as Self-Organizing Map (SOM), is presented in Chapter 5. The SOM approach

leads to a light-weight implementation of a localization scheme capable of generating

virtual coordinates that describe the relative positions of nodes. In Chapter 6 we
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demonstrate through extensive simulations that these virtual maps can be used for

efficient geographic routing, with results that are very close to the case where the real

coordinates are available.

We also evaluate the localization error when absolute positioning is required:

using only three or four anchor nodes, the virtual coordinates can be converted into

absolute positions by means of a linear transformation. The results are compared

to those of the popular Multi-Dimensional Scaling (MDS) technique [82], showing

substantial improvement especially for networks with low connectivity or anisotropic

layout. In these cases, which are intrinsically harder to localize, the proposed approach

reduces the localization error of factor comprised between 43% and 75% with respect

to the MDS technique. At the end of Chapter 6 we evaluate the computational and

communication complexity of the solution. This analysis, in addition to benchmark

tests on real hardware, shows that our lightweight implementation is suitable to solve

the localization problem in resource-constrained networks.

After having presented the SOM based algorithm, in Chapter 7 we introduce a

directional antenna which is suitable for WSN applications and can be used to derive

Angle of Arrival (AoA) information useful to solve the localization problem. The

antenna was designed by the Microelectronics Lab at the University of Florence to

meet the size, cost and complexity constraints of sensor nodes. In-field experiments

with COTS motes are used to demonstrate substantial benefits to WSN applications:

used outdoors, the antenna extends the communication range from 140m to more than

350m, while indoors it suppresses the interference due to multipath fading by reducing

the signal variability of more than 70%. We also show interference suppression from

IEEE 802.11g systems and discuss the use of the antenna as a form of angular diversity

useful to cope with the variability of the radio signal. Experimental data are analyzed

to derive model parameters intended for use in future network simulations.

In Chapter 8, we use part of the results introduced above to define an algorithm

that analyzes the signal power on the four faces to derive the angular position of

a node that communicates with the directional antenna. We use experimental data

3



to compare the estimation accuracy of different approaches, showing that an average

error of about 15◦ is possible using an algorithm based on an error function designed to

take into account missing readings on some of the antenna patches. This preliminary

study is intended to serve future extensions to the localization algorithm, where angle

information will be used to improve the localization accuracy of the SOM based

solution.
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Chapter 2

Background

In many applications of practical interest, the information gathered by a WSN is

of scarce utility unless stamped with the location of the sensors that collected it.

For example, in precision agriculture, temperature and moisture values are correlated

with position to identify micro-climate zones [85]. Knowing the sensors’ position is

also critical for locating an intruder vehicle in a military application [4] as well as to

guide a team of firefighters to the location of an emergency [18]. Finally, locations

are used to support network services like geographical routing [41], location-based

queries [35] and resource directories [55]. Unfortunately, this information is generally

not available since WSNs are deployed without control and sensor nodes do not posses

enough hardware resources to determine their location. Ideally, we would like to equip

each sensor node with a GPS receiver, but the cost, size and power consumption of

these devices are prohibitive for sensor nodes that need to be small and inexpensive.

In addition, sensor nodes are often deployed indoors or in other environments (e.g.

woods with dense foliage) where the absence of line of sight with the GPS satellites

prevents the use of this technology. Another solution would be to manually configure

the position of each node, but this is infeasible when a WSN comprises a large number

of nodes or is deployed in a hostile/inaccessible environment.

5



Given the importance of location information, the research community has pro-

duced a great effort to implement localization schemes suitable for sensor networks.

Before reviewing some relevant algorithms in Chapter 3, here we introduce the the-

oretical foundations of the localization problem, proposing a summary of relevant

literature that discusses the computational complexity of finding exact or approxi-

mate node coordinates.

2.1 Problem Definition

To introduce the problem of locating a set of sensors, we consider a Wireless Sensor

Network with N nodes randomly deployed. Each node i, i ∈ {1, . . . , N}, is character-
ized by its (unknown) position pi ∈ Rd (d = 2 or 3), by a unique identifier and by a set

of neighboring nodes that we indicate with the notation NB(i). In general, given any

two nodes i and j, we define them as neighbors if they can successfully exchange radio

messages over a symmetric, bidirectional radio link.1. Given the above conditions, the

localization task consists in determining the unknown positions pi using information

about the network structure, a problem that is formally analogue to the one of em-

bedding a graph in an Euclidean space. This subject has been extensively studied in

the area of computational geometry and graph rigidity. Sample applications include

satellite ranging, the study of rigid structures and the analysis of molecular conforma-

tion using inter-atomic distances obtained through magnetic resonance. In the next

section, we will introduce results from graph theory to characterize the problem’s

complexity and identify the conditions under which it admits a unique solution. Af-

ter first considering the case where edge lengths are known, we will analyze literature

results that apply to locating the nodes using connectivity information only.
1In real applications, radio links are subjected to interference and sporadic failures. The presence

of a radio link needs to be defined on the basis of some statistic on the percentage of messages
correctly exchanged between the two units.
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2.2 Embedding With Known Edge Lengths

A wireless sensor network can be represented as a undirected graph G = (V, E),

where each vertex is associated to a node, V = {1, . . . , N} and the set E contains

an edge {i, j} if nodes i and j are neighbors. Finding a graph embedding consist in

determining a mapping function ρ : V → Rd that assigns a position to each vertex

using constraints derived from the edges. A coordinate assignment produced by the

mapping function is called realization. A common instance of the problem arises when

the edge lengths are known and the vertexes must be assigned to positions such that

the inter-node distances are preserved, d(pi, pj) = d(ρ(i), ρ(j)), ∀ {i, j} ∈ E, where

d(·) indicate the Euclidean distance. This case corresponds to the situation where

node posses dedicated hardware (e.g. ultrasound transceiver) and are able to obtain

distance information from their neighbors.

A fundamental question related to this problem is to determine the conditions

such that the graph G admits a unique realization. We point out that identifying

the conditions for unique graph realization allow us to define the characteristic of a

WSN (mainly in term of connectivity) such that the nodes position can be computed

without ambiguities. We also note that since only relative measurements are used,

every solution will be correct up to global translations, rotations or reflections (see

Figure 2.1). The graph can be properly oriented by fixing the relative positions of

three non-collinear nodes in the 2D space or four such nodes in the 3D space. Fixing

these points is not sufficient to produce an unique solution since the graph can generate

multiple realizations when its structure is not rigid (see Figure 2.2).

In the 2D space, a graph with N nodes is characterized by 2N − 3 degree of

freedom (two for each node minus a global rotation or translations): since each edge

introduces a constraint, a rigid graph needs at least 2N−3 well-distributed edges [49].

The condition is not sufficient since rigid graphs are still susceptible of discontinuous

motions. In Figure 2.3 we report an example of a rigid graph that can generate

multiple realization without violating the constraints on the edge lengths. If we
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Figure 2.1: Localization ambiguities in absence of reference points.

temporarily remove the edge between nodes 2 and 6, the quadrilateral defined by

nodes 1-3-4-6 can be deformed to generate a new configuration where the edge 2-6

can be reinserted without changing its length (discontinuous flex ambiguity). For a

complete characterization of unique realization the graph needs to be (d+1) connected

and redundantly rigid, meaning that the graph is still rigid upon removal of an edge

[30]. While this condition has been proved to be necessary and sufficient [36] for

unique graph realization in 2D and can be tested in polynomial time [37], no such
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Figure 2.2: Flex Ambiguities.
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characterization exists for graphs in higher dimensions. The result mentioned above

have been used to determine the conditions under which the problem of localization

with known inter-node distances can be solved [25],[28] or to improve the performance

of basic trilateration algorithm under noisy measurements [62]

2.3 Embedding Using Connectivity Information

The results mentioned in the previous section apply to problem of embedding a graph

with known edge lengths. From a WSN perspective, this implies that nodes have

to perform range measurements, a capability that requires extra hardware (e.g. ul-

trasound transceiver) and thus increases the complexity of the network. A different

approach consists in refraining from range measurements and use connectivity infor-

mation to recover the node positions. Theoretical work under this assumption uses

the Unit Disk Graph (UDG) [48] model to represent the network, where two nodes

are neighbors iff their euclidean distance is less than one. By a proper coordinates

scaling, this model can be used to represent an idealized wireless network, where two

nodes are neighbors iff their distance is less than the communication range R (see

Figure 2.4).

Intuitively, a localization scheme should produce a coordinate assignment where

neighboring nodes are within the maximum radio range and non-neighbors are further

apart. Although the problem can be stated in simple terms, the problem of embedding
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an UDG in an Euclidean space is NP-Complete in one dimension and NP-hard in

two dimensions [14]. More recently, the problem has been proved to be APX-hard

[59], meaning that the solution cannot even be efficiently approximated. In fact,

there are node configurations for which even an optimal algorithm cannot produce

an embedding with quality better than
√

3/2 [48]. While this value limits the worst-

case error for an optimal algorithm, localization schemes with bounded errors are

very few. A recent work [63] proposes a scheme based on spreading constants and

random projection with a bound error of O(log2.5 n
√

log log n), where n is the number

on nodes. Although this work has an appreciable theoretical value, from a practical

point of view we are still far from approaching the theoretical bound
√

3/2 [72].
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Chapter 3

Localization Schemes in

Wireless Sensor Networks

The goal of a localization scheme is to assign a position (i.e. a pair of coordinates) to

each node in a wireless sensor network. The solutions proposed over past few years

achieve this goal using schemes that work under different assumptions and therefore

are suitable for applications with different requirements. In particular, the trade-off

between system complexity and accuracy plays a central role in WSN applications due

to the limited resources (memory, computation, communication and above all, energy)

available at each sensor node. A fundamental distinction in localization systems is

whether they assume the possibility to measure the distance from some reference point

(range-based) or not (range-free). The most popular example of range-based system

is given by the widespread Global Positioning System [33], which allows a mobile node

to accurately compute its position using the distances from three or more satellites.

These distances, obtained by measuring the signal TOF (Time Of Flight), allow the

receiver to compute its position using trilateration. The second type of systems, the

range-free localization schemes, can usually provide a coarser resolution, but are less

expensive to implement since they do not rely on sophisticate hardware. An example
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of range-free scheme is a RFID system [33] that detects the proximity of an object

close to some reference point. In the next sections we review some of the solutions

proposed to solve the problem in a range-base or range free context. Surveys and

comparisons among different localization techniques can be found in [31, 50, 65].

3.1 Range-Based Algorithms

An object in the 2D space can be localized when one of the following information

is known: i) the distance from three non-collinear anchor nodes (lateration), ii) the

angle from two anchor points (triangulation) or iii) the distance and the range from

a reference point (see Figure 3.1).

Obtaining range and angle information is not a trivial task, in fact, the need to

keep sensor nodes simple and inexpensive rules out the possibility to use sophisticate

hardware for range or angle measurements. Some of the techniques used to obtain

ranging information are outlined in the following sections.

12



3.1.1 Ranging Using Received Signal Strength Index (RSSI)

The RSSI is a measure of the signal power received by a wireless device. RF propa-

gation in the free space follows the Friis equation and the path loss is proportional to

1/d2, where d is the distance between the source and the receiver. In real case appli-

cations, the path loss is harder to predict since it depends on the characteristic of the

environment where the communication takes place. For example, the attenuation can

be as low as 1/d1.5 along straight corridors that act as wave-guide, proportional to

1/d4 for near the ground transmission, where the component reflected by the ground

destructively interferes with the LOS (line of sight) component, or even higher in

complex indoor settings. Despite the unpredictability of the radio signal propagation,

several research works assume the possibility to obtain range information from RSSI

measurements (eg. [32]) and propose localization results based on simulations where

the range measurements are affected by Gaussian noise [71]. The effectiveness of such

solutions in real-world applications remains difficult to evaluate due to the differences

in RF propagation when moving from an environment to another.

3.1.2 Ranging Using RF Time of Flight (ToF)

RF Time of Flight ranging techniques are conceptually more accurate than RSSI

solutions because the measurements are based on signals that propagate at the speed

of light (constant) and thus are less dependent on the environment. In practice,

this technique can be used only if nodes are equipped with fast clocks capable of

nanosecond accuracy (RF signals travel at 30cm per nanosecond); in addition the

sender and the receiver nodes must be accurately synchronized. If synchronization is

not feasible with high accuracy, an estimate of the range can be obtained by measuring

the round-trip time of flight, but this also requires a precise evaluation of the time

used by the target node to process the message and send a reply back to the source.

Given these requirements, ToF ranging techniques, although promising (e.g. UWB

location systems), are not suitable for WSN applications where nodes are clocked at

13



only few MHz. The use of faster clocks would increase both the cost of the hardware

and the power consumption.

3.1.3 Ranging Using Time Difference of Arrival (TDoA)

Ranging using acoustic ultrasound is more attractive to WSN applications mainly

because of two reasons: i) ultrasound transceivers are available as COTS components

easy to interface with sensor nodes, ii) accurate localization can be achieved using low-

rate clocks (given the speed of sound, a 32KHz clock is sufficient for 1cm localization

accuracy). Because ultrasound ranging is relatively easy to implement on sensor

nodes, several solutions [91, 75, 93, 80, 62] have been proposed where the source

node transmits an ultrasound pulse and an RF packet at the same time. The radio

message, which travels at much higher speed than the acoustic pulse, is used to trigger

the receiver node which in turn measures the Time Difference of Arrival (TDoA)

between the two signals. The distance between the two nodes is computed by taking

into account the TDoA and the difference of speed between sound and RF signals.

The main disadvantages of ultrasound ranging techniques is that sound propagation

is affected by weather condition and the effective range is reduced to only a few meters

when the transmitter and the receiver are not aligned (in facts, many transmitters

emit a conical directional beam). This, together with the costs of the additional

hardware, limits the applicability of this technology to WSN deployed in restricted

area which need high accuracy.

3.1.4 Angle of Arrival (AoA)

Angle of Arrival (AoA) estimation using beamforming or phased antenna arrays is

not appealing to sensor network applications due to the cost and complexity of these

technologies. However, recent work on directional antennas demonstrated that simple

switched patch units can meet the size and cost constraints of sensor nodes and

several localization algorithm uses AoA to localize sensor nodes [69, 67, 94, 60]. In
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Chapter 7, we introduce the four beam directional antenna developed at the University

of Florence and we propose a technique for angle estimation that can be useful in

localization algorithm (see Chapter 8).

3.2 Range-Free Algorithms

Range-free algorithms [87] overcome the high cost and system complexity of range-

based schemes by using solutions that do not rely on dedicated hardware for distance

or angle measurements. The location of each node is estimated by exploiting proximity

information that is inferred using the radio or the sensors available at each node. In

the first case, nodes that can successfully exchange radio messages must be not farther

than R, where R is the maximum communication range. In the second case, sensors

can be used to sense natural (or artificially generated) phenomenon that are used as

basis for the localization process. The schemes are further classified on whether they

rely on the presence of anchor nodes placed at known position or not (anchor-based

vs anchor-free).

3.2.1 Anchor-Based Solutions

Centroid

The Centroid [15] scheme, which is one of the simplest solutions, works by assuming

that the network contains a set of anchor nodes A = {a1, . . . , an} placed at known

locations (xi, xj)i,j={1,...,n}. The anchors periodically broadcast their coordinates to

the other nodes, which keep track of each message received. The nodes at unknown

position determine their location by computing the average value of the anchor co-

ordinates heard, i.e. the center of gravity, COG, of a system of masses placed in

correspondence of the anchor nodes heard (see Figure 3.2). The robustness of the

scheme is improved by maintaining statistics on the number of message received from

each anchor. Only anchor nodes with a communication ratio greater than 90% are
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Figure 3.2: Centroid scheme: the position of the node to localize is
given by the center of gravity (COG) of anchors heard

used in the computation. The localization accuracy of the centroid method is heavily

affected by the number of anchor nodes used. In a subsequent work the authors pro-

pose a solution to adaptively place additional anchor nodes to decrease the localization

error [16].

DV-Hop Scheme

In the “DV-Hop” scheme [70], anchors flood the network with message beacons that

are re-transmitted by each node with the hop-count value increased by one unit.

Using this approach, each node in the network will eventually be able to compute the

shortest path distance (in terms of hop count) from any anchor in the network. To

convert the path length into an absolute distance, the average hop count length is

first computed using the following expression:

dhop =

∑
i

∑
j

√
(xi − xj)2 + (yi − yj)2

∑
i

∑
j

hij
.

In the above expression, the hopcount distance between any two anchor nodes is

used to divide the actual Euclidean distance separating them (we recall that the
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Figure 3.3: DV-Hop scheme: the shortest path (hop-count, hc) is used
to estimate the distance from a node x to the anchor nodes in the
network. The actual position is computed using multilateration.

location of anchor nodes is known). The result of the computation is an average hop

count length that can be used to convert an hop-count value into a distance value

(see Figure 3.3). Having determined the distance between three or more anchors,

each node computes its location using multilateration. The authors use a least square

method (the Householder method) to compute the actual position. The scheme works

well when the path connecting nodes and anchor nodes lie approximately on a straight

line: in this case the hop-count distance is a good approximation of the actual inter-

node distance. When the network connectivity is low, the performance degrades since

the hop count distance is not a good approximation of the actual distance (see Section

6.6 for more details).

A similar approach is proposed in [66], but in this case the estimation of the av-

erage hop-count length benefits from a priori knowledge of the nodes density through

the use of the well known Kleinrock and Slivester formula [43] do determine the hop

size:

dhop = r

(
1 + exp(−nlocal)−

∫ +1

−1

exp(
−nlocal arccos(t− t

√
1− t2)

π
)dt

)

where r is the average communication range and nlocal is the local node density.
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A.P.I.T.

The APIT scheme proposed in [29] is based on an approximate test to determine

if a node is within the triangular area defined by three anchor nodes. The idea is

that if the node to localize could move, it would detect increasing (decreasing) RSSI

levels as it get closer (farther) to an anchor node. The PIT (point in triangle test)

determines if a point is inside a triangle by checking for the existence of a direction

such that moving on that path the node would get closer to all of the three anchor

nodes (see Figure 3.4a). If such direction does not exist, the node is considered to

be inside the triangle. Obviously the node cannot move, therefore an approximate

version of the test (Approximated PIT) is performed by simulating virtual movements

in the direction of the neighboring nodes (e.g. by comparing the RSSI values seen by

adjacent nodes). The final node position is computed by intersecting the area of all

the triangles a node belong to and then computing the COG (center of gravity) of

such area (see Figure 3.4b).

We note that the scheme proposed is not a truly range-free solution since is

based on RSSI comparisons, however the work is interesting because the authors use

extensive simulation to compare their solution to the Centroid and DV-Hop schemes

presented before. Results show that all the schemes previously mentioned perform

well only when a high number of anchor nodes is present and the network density is

high. For uniform topologies with connectivity equal to 8, each node needs to be able

to receive the beacon messages from more than twelve anchor nodes to reduce the

localization error under 1.0R (see Figure 3.5).

SeRLoc

SeRLoc [51] also implements an area-based, range-free approach similar to Centroids

and APIT to determine the location of a node. The anchor nodes are equipped

with switched directional antennas capable of covering the 360 horizon with non-

overlapping sectors. The anchor nodes periodically switch beam and transmit sec-
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Figure 3.4: APIT scheme: a) Each node uses the APIT test to de-
termine if it is inside the triangle area defined by three anchors. b)
The final position is the COG of the intersection of all triangles a node
belong to.

torized beacons to the rest of the nodes along with angular information about the

beam used. Similarly to the other approaches considered so far, nodes compute their

position by determining the intersection of the beams seen from each anchor node

(see Figure 3.6). SeRLoc also addresses the problem of security in sensor network

localization. Other algorithms designed to implement secure localization services are

presented in [68, 56, 57, 52, 17].

Figure 3.5: Comparison of the localization accuracy achieved by differ-
ent range-free schemes. He et al.[29]
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Probability Grid

Proablity grid [88] is a localization scheme based on the assumption that nodes are

placed on a regular grid. It uses a very similar idea to the DV Hop positioning algo-

rithm since anchor nodes flood the network with messages containing their position.

Each node estimates the shortest path from each anchor node and then computes

the probability of being on each intersection point of the grid. The location with

maximum probability is chosen as an estimate for the node’s position.

3.2.2 Anchor-Free Solutions

MDS

Multi-Dimensional Scaling (MDS) [13] is a technique that has been extensively used

in psychometrics and many other applications to visualize multidimensional data sets.

MDS implements a projection technique (to a 2D or 3D space) capable of preserving

the similarities present in the original data set. The use of MDS to solve the local-

ization problem in WSN was originally proposed in [82]. The node positions in the

2D space are computed by first creating a N by N matrix containing the squared
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distance between each node in the network (where N is the number of nodes). If

node distances are not available, the matrix is generated using the hop-count value

between each node. The final coordinates are obtained by first double-centering the

distance matrix and then using singular value decomposition and retaining the largest

two eigenvectors (three for 3D localization). The method was successively extended

to work in a distributed fashion [81, 39], motivated in part by the scarce performance

with anisotropic layout like the ones described in section 6.6.

LightHouse

LightHouse [78] implements a different approach since node localization is achieved by

exploiting the sensing capabilities of nodes. In this solution a base station mounted on

a rotating support propagates a beam of light having width b (the beam is generated

using an array of laser diodes) that is detected by the light sensors mounted on each

of the nodes to localize (see Figure 3.7).

The main idea behind the algorithm is that it is possible to compute the distance

from the base station by simply having each node measuring the time (tbeam) during

which it sees the light from the base station. The distance is obtained through the

equation:

d =
b

2 sin(α1/2)
=

b

2 sin(πtbeam/tturn)

where b is the width of the beam, tbeam is time measured by a node and tturn is the
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rotation period. Localization in the 2D space is achieved by using three base stations

mounted on orthogonal directions.

SpotLight

A similar approach to Lighthouse is used by the SpotLight system [86], which also

relies on synchronized light events to localize a set of nodes. Three different scenarios

are analyzed (see Figure 3.8): i) point scan: if the nodes lies on a straight line (e.g.

nodes deployed along a road), they can be localized by a base station that emits a

beam of light that is moved at constant speed along the line where the nodes lie.

Since each sensor will detect the light at a different time, the node distance from a

reference point can be computed by measuring the detection time and dividing it by

the beam speed. ii) line scan: some devices (e.g. lasers) can generate lines of light

that can be used to localize nodes on a 2D plane. A first line scanning in one direction

(e.g. vertical) allows the nodes to measure their distance from the vertical origin of

the deployment area (again, the distance is inferred by the time a node detects the

light beam). 2D localization is achieved by a second beam that scans the network in

direction perpendicular to the first one (e.g. horizontal). Finally, iii) a third method

uses a video projector to illuminate the whole deployment area, which is partitioned

in non-overlapping zones. Each zone is illuminated with an unique pattern light,

where the presence of light denote a “1” bit and dark is “0”. The temporal sequence of

light/dark event is used to transmit a code representative of each area in the network.

3.3 Scene Analysis Algorithms

The major problem in using the RSSI signal to estimate a distance is that the signal

propagation is affected by hard-to-predict phenomena like multipath fading, shadow-

ing, scattering and interferences from other source operating in the same band. The

problem is especially severe in indoor environments, where the presence of obstacles

22



t0 t1 t2 t3

base station

t0 t1 t2 t3

base station

ho
riz

on
ta

l s
ca

n 
lin

e

vertical scan line

(tvert,thoriz)

ho
riz

on
ta

l s
ca

n 
lin

e

vertical scan line

(tvert,thoriz)

0000 0001 0010

0011 0100 0101

0111 1000 1001

0000 0001 0010

0011 0100 0101

0111 1000 1001

a) Point scan b) Line scan c) Area scan

Figure 3.8: SpotLight: localization is implemented by timing the arrive
of a light beam. Three options are available.

(e.g. large metal cabinets, doors, windows, ceiling fans) increases the variability of

the signal strength. A localization approach that tries to overcome these difficulties is

based on generating RF maps of an environment and then using these maps to locate

moving people or objects [6, 58]. The method requires a setup phase during which a

mobile device is used to record the signal strength from several base stations present

in the network. The result of this phase is the creation of a RF fingerprints database

that is later used to locate people or objects within the mapped environment. Scene

analysis methods have the advantage that can adapt to complex environments and

provide acceptable performances when a sufficient number of base stations is avail-

able. These methods are also computationally inexpensive, but on the other hand

they need a time consuming setup phase that needs to be repeated every time there

are substantial changes in the environment (e.g. new base stations are added, large

piece of furniture are moved, etc.).
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Chapter 4

Problem Statement

As seen in previous sections, in most WSN applications a localization service is re-

quired to provide each node with knowledge of its position. Determining such infor-

mation is a challenging task since the problem is computationally hard (Chapter 2)

and an approximate solution must be found using only a limited amount of initial

data (e.g. the known positions of a small set of anchor nodes or constraints derived

from the radio connectivity among nodes). This thesis addresses the localization

problem in conditions where the amount of initial information is reduced

to the minimum, seeking to find a solution under realistic network configurations.

For realistic configurations, we mean sensor networks suitable for real-world applica-

tions, where cost and implementation constraints often impose solutions that differ

sensibly from those considered in many WSN simulation studies.

In this thesis, we address the problem of localization for networks with the fol-

lowing characteristics:

• Small to medium number of nodes: networks with ten to one hundred of

nodes.

• Sparse Deployments: networks that have low density and where each node
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has only a small number of radio neighbors.

• Absence a-priori knowledge: we assume the possibility that sensor positions

have to be computed in the absence of initial information about anchor nodes

(i.e. none of the sensor locations is initially known).

• Resource constrains: sensor nodes are equipped only with the hardware

strictly necessary to execute the sensing application: a set of transducers, a

small microcontroller for data processing and a radio transceiver for wireless

communication. None of the nodes has a GPS devices or other hardware for

accurate range measurements.

• Anisotropic layouts: we assume that networks can be deployed in environ-

ments where the presence of large obstacles (e.g. buildings, lakes or mountains)

results in a layout with holes or other irregularities.

Finding an algorithm capable of working under these assumptions represents an

interesting research challenge because it would enable localization in low-cost net-

works suitable for many application scenarios. Many of the schemes presented in

Chapter 3 have been validated using simulations that consider large networks with

high connectivity and a large number of anchor nodes. Although in the early stages

of research, the “Smart-Dust” concept envisioned networks with tens of thousands of

tiny sensor nodes, recent experiences with a few large-scale deployments [5] (about

one thousand nodes) have demonstrated that current technology still has to mature

before that vision will become a reality. Beyond technological issues, the size of ac-

tual WSNs is limited by economic factors and the high costs related to deploying

and maintaining large-scale sensor networks are affordable only in specific application

fields (e.g. military applications). According to a recent survey [10], many of the WSN

applications deployed in the next few years will exploit small sensor networks with

less than one hundred sensor nodes; therefore, implementing a localization scheme

capable of working with these kinds of networks provides a solution to a problem of

practical interest.
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Similar considerations apply to the network connectivity parameter, i.e. the den-

sity of nodes in a WSN. Placing a high number of nodes in a small area serves to

achieve great spatial-resolution, but again, cost considerations often limit the num-

ber of units available and may force sparse deployments where each sensor is in radio

range with only a small number of neighbors. Furthermore, high spatial (or temporal)

resolution might not be required in applications where the dynamic of the phenomena

to monitor varies slowly with time and space (e.g. in environmental monitoring appli-

cations or precision agriculture). As seen in Chapter 2, networks with small numbers

of nodes and low connectivity are intrinsically hard to localize because the number of

constrains that can be inferred are lower. While for many communication protocols

and other network services (e.g. service directories, distributed databases) simulat-

ing large, high-density networks serves to validate the scalability of the proposed

approach, we note that the true challenge for a localization scheme is to maintain

acceptable performance when the number of nodes and network density decreases.

In addition to considering networks with low connectivity, this thesis addresses

the problem of localization in networks where none of the nodes possess ranging

capabilities. The range-free approach is appealing because it does not require nodes

with special hardware for range measurements (e.g. ultrasound) and therefore can

be implemented in networks consisting of inexpensive sensor nodes. Although several

range-free schemes have been proposed, many of them (Chapter 3) rely on the presence

of a large number of nodes at known positions (anchor nodes). The purpose of this

thesis is to further reduce the assumptions on the system requirements and investigate

an anchor-free scheme capable of computing the sensor positions in the absence of

anchor nodes. Enabling such a scheme would not only decrease the system complexity

(no GPS devices are needed on anchor nodes), but would also improve the reliability

and robustness of the scheme since it would eliminate the dependence on a few special

nodes. In many anchor-based approaches, the number of anchor nodes in the network

heavily affects the localization performance, therefore even the failure of a small subset

of them can sensibly decrease the accuracy.
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We finally complete the list of realistic system assumptions, by taking into con-

sideration the problem of localization in networks affected by an anisotropic layout

or where the connectivity among nodes (i.e. the maximum communication range)

varies within the networks. Under these conditions, some schemes fail to produce

acceptable results and the problem needs to be solved by computing small local maps

that are later stitched together into a global map. The “map-stitching” technique

greatly increases the solution complexity and is susceptible to large errors when the

network connectivity is low, thus a solution robust to layouts irregularities would

greatly simplify the implementation of a localization service in real deployments.

While the main focus of this thesis centers on the study of a novel range-free,

anchor-free solution capable of localizing networks with low connectivity or anisotropic

layout, we also want to evaluate the use of inexpensive switched antennas as a way

to infer angle position in sensor network applications. Part of this work addresses

the characterization of one such antenna with the purpose of implementing a simple

solution to derive angle information in WSNs. This information will serve in future

extensions of the localization work to improve the overall accuracy of the algorithm.
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Chapter 5

Range-Free, Anchor-Free

Localization

In this chapter we propose an range-free, anchor-free localization method capable of

computing the node coordinates without relying on range measurement or anchor

nodes. The solution is based on neural network paradigm known as Self-Organizing

Maps (SOMs) [44, 45]. Introduced in the early 80’s, these maps have found numerous

applications in many areas such as speech recognition, data mining and bioinformatics

([42, 73] contain an extensive bibliography of SOM papers). In the next sections, af-

ter introducing the map structure and the learning algorithm, we show how the SOM

formalism leads to an intuitive solution of the localization problem. Unfortunately,

despite the attention received, SOMs have proved to be surprisingly resistant to math-

ematical characterization and convergence results are only available for the case of

one-dimensional configuration of neurons [22], therefore we use extensive simulations

(Chapter 6) to characterize the localization results and to compare our solution to

the MDS technique.

28



Neuron j

Weight vector
















=

jd

j

j

w

w

w

wj
...

2

1

Neighboring Neurons

(a) SOM

Input Sample













=

dx

x

x

x
...

2

1

Best Matching Unit (BMU)

(b) BMU Election

Neighborhood Function h( )

Weights changes

(c) Adaptation

Figure 5.1: a) A two-dimensional map with the unit forming an hexag-
onal pattern, b) the first step of the learning algorithm: the unit whose
weight vector is more similar to the input weight is elected as best
matching unit (BMU). c) the adaptation phase: the weights of neurons
around the BMU are adapted toward the input sample. A Gaussian-
shaped neighborhood function controls the degree of adaptation.

5.1 Self-Organizing Maps

A SOM [44] is a neural network that learns application information as a set of weights

associated with the neurons (nodes). In comparison with other techniques (e.g. Multi-

Layer Perceptron), SOMs are unique because the neurons are arranged in regular

geometric structures, typically two-dimensional lattices with rectangular or hexagonal

patterns like the one in Figure 5.1a. As we will soon see, this spatial arrangement

plays a central role in the training process of the maps and results in a topological

organization of the information learned1.

The training of a SOM is performed in an unsupervised fashion: the map is able to

learn the underlying properties of the training set without the aid of labeled samples or

reward functions (hence, they are characterized as “self-organizing”). Assuming that

the input samples and the map weights wj ’s are d-dimensional real valued vectors,

the three phases of the training algorithm are as follows:

1. Sampling: A sample is extracted from the training set and presented to the

network. We use the notation x(n) to denote the sample at current iteration.
1This model vaguely resembles the structure of the cerebral cortex, where neurons are placed on

a 2D surface and interact preferentially over lateral synaptic connections.
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2. Competition: The sample x(n) is compared with the map weights (there is one

weight per neuron) through the use of a discriminating function f = f(x,w).

The neuron that scores the maximum value wins the competition and become

the Best Matching Unit (BMU). If the discriminating function is implemented

using the Euclidean distance, the election rule is given by:

BMU(n) = arg min
j
‖x(n)− wj(n)‖ . (5.1)

3. Adaptation: Finally, the weight vectors of the BMU and its neighbors are

adapted according to the following rule:

wj(n + 1) = wj(n) + η(n) h(j, BMU(n))[x(n)− wj(n)]. (5.2)

The update formula in 5.2 is controlled by the global learning rate parameter η

and by a neighborhood function h = h(i, j) (see Figure 5.1c). For ensuring conver-

gence, the learning rate η must decrease monotonically with the number of iterations.

A common choice is to implement the learning rate as an exponential function that

decays from ηmax to ηmin over a given number of iterations. Typically, η decreases

within the range [ηmax, ηmin] = [0.1, 0.01], while the number of iterations goes from

few hundreds to several thousands depending on the size of the training set.

The update rule is also controlled by the neighborhood function h = h(·, ·).
This function regulates the weight changes on the basis of the map distance between

BMU and the neuron being adapted. In the case of a Gaussian shaped neighborhood

function, the expression of h is given by:

h(i, j) = exp
(
−distmap(i, j)2

2r(n)

)
, (5.3)

where distmap(i, j) measures the distance on the map between two neurons. Accord-

ing to this expression, the magnitude of the changes is maximum for the BMU and

decreases for units that are far from it. The extent of the area affected by the changes
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Figure 5.2: 10×10 SOM trained with samples from the RGB color space:
a) input space, b) initial weights, c) final weights.

depends on the radius r(n), a global parameter that controls the “width” of the neigh-

borhood function. As in the case of the learning rate, the value of r(n) decreases with

the number of iteration: a relatively large radius during the initial iterations allows

the map to quickly organize the neurons, while a smaller value toward the end de-

termines localized changes, such that different parts of the map become sensitive to

different input features.

The SOM technique is simple yet effective in capturing the properties of the input

space and organizing them in an ordered fashion. An example of the SOM method

in action is reported in Figure 5.2, where a 10 × 10 rectangular map is trained with

random samples x(n) = [rn, gn, bn] from the RGB color space (Figure 5.2a). In this

case, the weight vectors have the form wj = [rj , gj , bj ] and can be displayed using the

corresponding color. Figure 5.2b shows the initial configuration of randomly assigned

weights. After training the map with a few thousand random samples, the SOM

assumes the configuration shown in Figure 5.2c. The result shows that among the

224 colors of the input space, not only the map was able to select 100 representative

samples (SOMs are vector coding techniques), but it also generated a topologically

ordered representation of the color space, in the sense that similar colors were mapped

to nearby locations. This property emerges as a consequence of the update rule: since

adjacent neurons are subjected to similar weight changes, they eventually converge

to similar values.
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5.1.1 Topological Properties

In the previous algorithm, if both the learning rate and the “width” of the neighbor-

hood function are decreased monotonically with the number of iterations, the weights

of the SOM converge to a stable configuration.

As noted in the example of Figure 5.2, the properties of the learning algorithm

are such that the final weights ultimately produce a topologically ordered description

of the input space. In order to provide and a further exemplification of this property,

we will consider the case of a bidimensional 4 × 4 SOM with the neurons arranged

in a rectangular pattern (Figure5.3.a). The weights wj associated to each neuron j

are two-dimensional real valued vectors, wj = [x y]′, and are trained used samples

from an input set A ⊂ R2 (Figure 5.3b). In this case, since the dimensionality is

two, we can plot the value of the weights in the plane: Figure 5.3c shows the initial

configuration (weight randomly assigned). Segments are used to connect the weights

that belong to adjacent neurons on the map. Figures 5.3c to 5.3d show the weights

configuration after presenting 50, 100 and 1000 training samples. We note that as the

training algorithm executes, the weights spread to adapt to the values from the input

space, with the final position that are ordered with respect to each others.

5.2 Localization using SOMs

At the end of the training phase, the neurons contain model vectors that are repre-

sentative of the input space, therefore the map can be used as a codebook for arbitrary

samples. The code is given by the weight vector that best matches (BMU) the given

sample. In addition, since each BMU defines a position on the two-dimensional grid,

SOM implements a projection technique2 from the input space to the plane defined

by the lattice of neurons (see Figures 5.4).
2In this sense SOM can be seen as non-linear version of the Principal Component Analysis (PCA)

technique.
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(e) 100 iterations
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Figure 5.3: 4x4 SOM trained with random inputs from a two-
dimensional training set.
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Figure 5.4: Mapping from a high dimensional input space to a two-
dimensional lattice of neurons.
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Figure 5.5: Mapping of sensor positions to a virtual sensor grid as
defined in [26].

The dimensionality reduction property has been widely exploited in many appli-

cations for data analysis and visualization of large data sets [42, 73]. More recently,

SOMs have been used to implement localization schemes for mobile robots in unknown

environments [38, 27]. The SOM, initially trained with information collected by on-

board sensors during the exploration phase, is then used as a virtual map to translate

new sensor readings into grid positions or to recognize different environments (e.g.

different rooms).

Ertin and Priddy [26] have used a similar approach to solve the localization

problem in WSNs. In their work, synchronous readings collected by all the sensor

nodes are used to build the training set for the SOM. After training the model, the

localization task is performed using new sensor readings to sort nodes on the basis of

their proximity to a virtual grid of nodes (see Figure 5.5). Although no attempt is

made to compute individual node positions, the authors suggest possible applications

to the target tracking problem.

Our solution is similar to [26] in the sense that it is also based on the SOM

formalism, but the approach taken is rather different since it does not rely on sensor

readings or time synchronization services. In addition, our scheme explicitly computes

individual node positions as a result of the training phase of the map.
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The intuition behind the proposed solution is that, with no prior information on

sensor locations, the best assumptions we can make are:

1. Uniform coverage. Sensor nodes provide an (approximately) uniform cover-

age of the deployment area.

2. Neighbors Proximity. Nodes that are within their radio range are relatively

close to each other

In Section 6.6, we consider non-uniform deployments and the effect of irregular

radio patterns, nevertheless the two assumptions (uniform coverage, radio neighbors

close to each other) are realistic for many WSNs and are useful to give an intuitive

illustration of our approach. To solve the problem we must therefore generate a loca-

tion assignment that is approximately uniform, taking care of placing neighbor nodes

close to each other. This is accomplished by associating the unknown node positions

(xi, yi) to the weights of a SOM and then training the model with random samples

from an uniform distribution. As a result of the training phase, the weights (i.e.

nodes position) will eventually spread to cover the sampling area and, if associated

to adjacent neurons on the map, neighboring nodes will be kept close to each other.

Using an approach substantially analogous to the one exposed here, SOMs has

been previously applied to graph drawing [61, 12], a branch of graph theory that deals

with the visualization of complex graphs. The graph layout problem is similar to the

localization problem in the sense that it also seeks to find a coordinate assignment such

that vertices connected by edges are positioned close to each other. However, while

the evaluation of a graph layout is mostly based on aesthetic factors (e.g. uniform

distribution of nodes and edge lengths, separation between graph elements, number of

edge crossing, etc.), the results of the localization assignment are directly comparable

with the true sensor locations. In this work we explicitly evaluate the effectiveness

of SOM in producing maps similar to the ground truth and we focus on reducing the

localization error.
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5.3 System Model

We consider a connected network with N nodes placed at unknown locations in the

2D space: (xi, yi)i=1,...,N . None of the nodes is equipped with hardware for position,

range or angle estimation (e.g. GPS, ultrasound receivers or smart antennas) and

no assumption is made regarding availability of sensors at each location. We only

assume that every node can determine the set of its radio neighbors3 and can trans-

mit this information to a central point of computation. Also, during the neighbor

discovery phase, nodes use the same transmission power in the effort to ensure an

approximately uniform communication range. Once the connectivity information is

known, the network can be represented as an undirected graph Gnet = (V,E), where

two vertices are connected if the corresponding nodes are radio neighbors. The graph

also serves to introduce the hop distance metric d = disthop(·, ·) defined as the length

of the shortest path connecting two nodes.

5.4 Modified SOM Model

The core of the SOM technique is the update rule defined in (5.2). In that expression,

the neighborhood function h(·, ·) takes into account the spatial arrangement of the

neurons through the map distance distmap(·, ·). Now we note that, as long as a

distance function between two elements on the map is provided, the regular lattice

can be replaced by an arbitrary structure of interconnected neurons (see Figure 5.6).

Consequently, we modify the original SOM architecture by using the network graph in

place of the lattice of neurons and exchanging the map distance with the hop distance

disthop(·, ·). The new neighborhood function is given by:

h(i, j) = exp
(
−disthop(i, j)2

2r(n)

)
. (5.4)

3By neighbors, we mean symmetrical radio neighbors: messages from node j are received by i
and vice versa.
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Figure 5.6: Correspondence between a WSN and the SOM structure.
Intuitively, the localization algorithm maps the neighboring nodes of a
WSN to the neighboring neurons of a SOM.

Having defined the new neighborhood function, the training algorithm illustrated

in Section 5.1 can be applied to the localization problem. In this modified SOMmodel,

neurons are located on the vertices of Gnet, hence we have a direct correspondence

between the neurons and the network nodes. The weight vector associated with each

neuron/node j has the form wj = (xj , yj). This vector, initially picked at random,

will eventually contain the estimated location for the corresponding node.

5.5 Localization Algorithm

Since the proposed algorithm is centralized, each node needs to communicate the list

of its radio neighbors to the unit in charge of the computation. This information is

necessary first to build the adjacency matrix Gnet, and then to compute the hop-count

distances between each pair of network nodes, which are stored in a matrix HC with

elements given by {hc}i,j = distmap(i, j). The matrix HC is the only input parameter

required by the localization algorithm (Figure 5.7).

According to the scheme of Section 5.1, the weight vectors (xj , yj) are initialized

with random numbers and then trained with a set of input samples. Since we are using

only connectivity information, we are free to work in a relative reference system where

absolute coordinates are not important. In light of this model, we can easily generate

37



SOM
LOCALIZATION

WSN NODE POSITIONS

Node1 = (x1,y1)
Node2 = (x2,y2)
Node3 = (x3,y3)
Node4 = (x4,y4) 
…
…

Connectivity
Data

Figure 5.7: Input and output parameters of the SOM localization
scheme.

the training set by sampling random points from an arbitrary uniform distribution

(e.g. 0 ≤ x, y ≤ 1). This fact greatly simplifies the implementation of the algorithm

since the localization task can be performed without having to rely on any other

external information (e.g. network’s physical dimensions or sensor readings like in

[26]).

Algorithm 1 contains the pseudo-code of the localization scheme. In the proposed

scheme, the learning parameter η(n) and the radius r(n) are decreased linearly with

the number of iterations (see lines 7 and 8). As a side note, we mention that, as the

radius r(n) shrinks, the level of adaptation for neurons far from the BMU becomes

negligible, so the update rule (line 13) can be more efficiently restricted to neurons

within a short hop distance from the BMU. In Section 6.4, after defining the simulation

setup and evaluation metric for the algorithm, we provide additional considerations

on the weight initialization and the number of iterations required by the algorithm.
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Algorithm 1: SOM Based Localization

Input: matrix Hc: hop count distances among nodes
Output: (xj , yj)j=1,...,N : node positions

% Initialization
1: [ηmax; ηmin] = [0.1; 0.01]
2: [rmax; rmin] = [max Hc

2 ; 0.001]

3: for all nodes n do
4: (xn, yn) = random()
5: end for

% Main Loop
6: for n = 1 : to n_iter-1 do
7: η(n) = ηmax − n[ηmax − ηmin]/(n_iter− 1)
8: r(n) = rmax − n[rmax − rmin]/(n_iter− 1)

9: (x, y) = random()
10: BMU = arg min

j
‖(x, y)− (xj , yj)‖

11: for all network nodes j do
12: h = exp

(
−Hc(BMU,j)2

2r(n)

)

13: (xj , yj)+= η(n)h[(x, y)− (xj , yj)]
14: end for
15: end for
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Chapter 6

Implementation Details and

Simulation Results

In this chapter we report the implementation details of the algorithm proposed in

the previous chapter and the results of the simulations used to validate it. Since we

are interested in evaluating our scheme’s performance in localizing small to medium

size networks (10 - 100 nodes) with low connectivity, we need to impose some con-

straints on how the random topologies are generated. We refrain from purely random

deployments (coordinates selected as i.i.d. random numbers) for two reasons:

1. It is unrealistic to assume that nodes will be positioned independently from each

other. Even when nodes are scattered from an aircraft, the probability of two

nodes ending in the same location is very low. In this case, the probability of a

node to be located in a specific location depends, at least, on the time at which

the node is thrown from the airplane and therefore varies from node to node. If

nodes are manually deployed, even if accurate control over the final locations is

not possible, it is reasonable to assume that nodes will be placed to provide a

roughly uniform coverage of the sensing area.
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Figure 6.1: The regular grid used to generate the initial node positions.

2. In purely random deployments, the probability to obtain connected networks

rapidly decreases to zero as we reduce the communication range [47].

Since it is difficult to generate meaningful low-connectivity topologies, we con-

sider a model in which the node density is kept roughly uniform by having the nodes

positioned on the intersection points of a grid with rows and columns spaced by a

factor r. We capture the nature of an ad hoc deployment by perturbing the positions

with random noise and allowing for large placement errors.

6.1 Simulation Parameters

The parameters used to generate our simulation are the following:

• Number of nodes, N: We simulated networks with 16, 25, 36, 64, 81 and 100

nodes. Although the simulations were executed using a number of nodes equal

to powers of 2, the algorithm can work with arbitrary network sizes (e.g. see

Section 6.6).

• Placement Error, σPE: The initial positions are given by a regular grid of
√

N × √N elements spaced by a factor r (see Figure 6.1). Node positions are

obtained by perturbing the grid positions with Gaussian noise having zero mean

and standard deviation σPE = {0.1, 0.2, 0.3, 0.4, 0.5} r. Figure 6.2 reports three

topologies for different values of the placement error.
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Figure 6.2: Three 100-node networks with different placement errors.

• Communication Radius, R: The maximum communication radius is chosen

as a function of the spacing factor r: R = {1.25, 1.5, 1.75, 2.0, 2.25} r. In this

first set of simulations, we consider two nodes as neighbors if their distance is

less than R. We analyze the effect of irregular radio pattern in Section 6.6.1.

The algorithm was evaluated by generating 50 networks for each combination of

the above parameters. After discarding disconnected networks, the number of simu-

lated to-pologies is 9630, with an average connectivity of 6.98. The results presented

in the following sections were obtained by executing 2000 iterations of the algorithm

presented in Section 5.5.
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Figure 6.3: Distribution of the average network connectivity (a) and
node degree (b) in the simulation experiments.
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source 

destination 

Figure 6.4: Geo-routing using virtual coordinates. At each step, the
scheme forwards the packet to the node whose virtual coordinates are
closer to the destination.

6.2 Virtual Coordinates

The SOM based scheme is truly an anchor-free, range-free algorithm in the sense

that it can generate virtual coordinates without relying on anchor nodes or distance

measurements. Since the virtual coordinates cannot be compared to the true network

coordinates, we use the delivery ratio of a greedy routing algorithm as evaluation

metric. At each hop, the routing scheme forwards the packet to the neighbor node

that is closer to the recipient of the message (see Figure 6.4), according to the rule:

next_hop = arg min
n
‖(xn, yn)− (xdest, ydest)‖ ,

where (xn, yn) are the virtual coordinates of the neighboring nodes and (xdest, ydest)

are those of the destination. Although the scheme is extremely unrefined (it simply

gives up if it is unable to get closer to the destination), it is still useful to define a

baseline for the performance achievable using more advanced schemes (e.g. GPRS

[41]).

Using the simulation setup previously introduced, we have compared the per-

formance of our approach with the results of MDS, a popular projection technique

that has been successfully applied to the localization problem in WSNs [82, 81, 39].

Figure 6.5 reports the percentage of packets successfully delivered using the greedy

algorithm that operates on the basis of the relative maps generated by SOM and
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Figure 6.5: Delivery Ratio of a greedy geo-routing scheme using virtual
coordinates.

MDS. The results show that the virtual coordinates produced by both methods are

effective when used for geographical routing, with a delivery ratio that is very close to

that obtained using the true network coordinates. Similarly, the length of the routing

path does not differ substantially from the case where the true node positions are

known to the routing scheme (graph is not shown).

6.3 Absolute Coordinates

As seen in the previous section, virtual coordinates can be computed solely on the

basis of connectivity information and are useful for important network tasks such

as packet routing. Nevertheless, there are applications where absolute positions are

required (e.g. a WSN to support a first responder team that needs to quickly lo-

cate the emergency scene). In order to convert relative node positions into absolute

coordinates, at least three anchor points are needed for the bidimensional case. In

this section, we have used four anchor nodes on the perimeter of the map to resolve

rotational, translational and flipping ambiguities and align the map to an absolute

coordinate system. The linear transformation to align the virtual coordinates to an

absolute reference system is found, in general, by considering the position of a set of

m anchor nodes:

A = {a1, a2, ..., am}.
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For each anchor node, let (xai
, yai

)ai∈A be the true coordinates and (pai
, qai

)ai∈A

be the virtual coordinates computed by the localization algorithm. To compute the

2 × 2 matrix L that defines the linear transformation, we need to remove the mean

value from the two set of coordinates1 (the true coordinates (xai , yai) and the virtual

coordinates (pai
, qai

)) and then solve the overdetermined linear system of equation

given by:




(pa1 − p̄a) (qa1 − q̄a)

(pa2 − p̄a) (qa2 − q̄a)

. . . . . .

(pam − p̄a) (qam − q̄a)




=




l11 l12

l21 l22







(xa1 − x̄a) (ya1 − ȳa)

(xa2 − x̄a) (ya2 − ȳa)

. . . . . .

(xam − x̄a) (yam − ȳa)




,

where the average values are the following:

(x̄a, ȳa) =
1
m

m∑

i=1

(xai , yai),

(p̄a, q̄a) =
1
m

m∑

i=1

(pai , qai).

The matrix L, which is obtained from the least-squares solution of the system above, is

then used to convert the virtual coordinates (p, q) in estimates of the true coordinates

as follows:

x̂i = x̄a + l11 (pai − p̄a) + l21 (qai − q̄a) ,

ŷi = ȳa + l12 (pai − p̄a) + l22 (qai − q̄a) .

As a result of this transformation, the estimated positions (x̂i, ŷi) can be compared

with the true positions (xi, yi) and the localization error can be expressed quantita-

tively:

Avg. Err(R) =
1
R

N∑
i=1

√
(xi − x̂i)2 + (yi − ŷi)2

N
,

1By doing this we first resolve the affine transformation given by an eventual translation of nodes.
After this operation we can determine the linar part of the transformation.
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Figure 6.6: a,b) Average Error (R) as function of network size for SOM
and MDS. c) Ratio between the error achieved by the two schemes. d)
Average Error (R) as function of the network connectivity.

where N is the number of nodes in the network and R is the communication range.

Figures 6.6b and 6.6c show the error of SOM and MDS for different network sizes

and placement errors. The error is expressed as a value relative to the communication

range R. As expected, the accuracy of the localization schemes decreases as the

placement error on the map increases. We note that while MDS works by actively

using the hop-count distances between each pair of nodes, and thus it works better

for larger and denser networks (where the number of constraints is higher), SOM is

based on localized constrains and works better for smaller networks.
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Figure 6.7: Localization convergence.

6.4 Weight Initialization and Convergence

Having defined the simulation parameters and the localization error, we analyze the ef-

fect of weights initialization and number of iterations on the algorithm’s performance.

Weight initialization influences both the convergence speed and the localization accu-

racy. In Sections 5.1 and 5.2 we stated that weights are initialized at random (usually

with samples from the input set or other small values). In our simulations we have

verified that this approach works well on average, but there are few occurrences where

the final error is large (> 1.0R).

Figure 6.7 shows: a) a random topology b) the initial weight configuration and

c) a case where the localization algorithm produced a substantially acceptable result.

On the other hand, Figure 6.7d shows an occurrence where the algorithm failed to

converge to an acceptable solution for the same network topology. Although the

relative positions of the majority of nodes are correct with respect to each other, the

network is “twisted”, with the nodes of the upper half in inverse order respect to the

lower half. Such problem is caused by unfortunate initial weight configurations that
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Figure 6.8: Weights Initialization.

determine a topological flipping of large blocks of nodes. In our experiments we found

that the occurrence of such cases can be greatly reduced by initializing the weights

with values lying on a straight line. The initialization rule is given by:

(xn, yn) =
Hc(o, n)

max
j

Hc(o, j)
, (6.1)

where o identifies a node placed on the perimeter of the map. According to the

equation, weights are initially aligned along a line starting from (0, 0), the position

of node o, and ending at (1, 1), the position of the node with maximum hop count

distance from o (see Figure 6.8).

This scheme, which partially sorts the initial node positions, helps in reducing

the final localization error as well as the occurrence of “twisted” networks. In our

simulations we found that the proposed solution reduces the average localization error

by about 43% with respect to random initializations, while the pergentage of networks

with final error > 0.5R is only 10.6%, against 31.5% for random initialization and

20.12% for MDS.

The localization accuracy also depends on the number of iterations used in the

algorithm. Figure 6.9 reports the average localization error for a test set containing

100 topologies generated using the simulation parameters defined in Section 6.1. We
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(results averaged over 100 random topologies).

note that error rapidly decreases during the first 500 to 1000 iterations and then only

reduces marginally.

6.5 Exploiting Anchor Information

In previous sections, the maps generated by SOM and MDS have been scaled and

oriented by using the position of four anchor nodes. However, the structure of our

approach is such that anchors’ information (if available) can be exploited during the

training phase of the map, with valuable effects on the final results. The modifica-

tion to the algorithm involve two points: i) coordinates of anchor nodes are never

updated (since they are already correct) and ii) whenever an anchor node is elected

as BMU, the sample at current iteration is replaced with the anchor’s position. The

two modifications have the effect that anchor nodes not only remain in their position,

but they also facilitate the map organization during the initial iterations. In addi-

tion, if the number of anchors is equal or greater than three, the method generates

absolute coordinates without needing any further transformations. We have evalu-

ated the performance of the algorithm using a priori knowledge of three and four

anchor nodes (SOM_3A and SOM_4A respectively). The results show a substan-

tial improvement in the localization accuracy: using four anchor nodes during the

computation (SOM_4A) reduces the average localization error by about 30% with
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using anchor information.

respect to the basic SOM algorithm, while the percentage of networks with localiza-

tion error >0.5% drops to only 3.15% of the total cases. Figure 6.12a reports the

results for various values of network connectivity. The plot shows that the SOM al-

gorithm significantly outperforms MDS when the network connectivity is low, with

an average error reduction of 43% for networks with connectivity between 3 and 10

(using SOM_4A). The explanation is that SOM is “less aggressive” in the use of node

distances. The effect of the neighborhood function h(·, ·) is such that the distance

constraints among nearby sensors are weighted more than those of nodes several hops

away. Consequently, the SOM scheme is less sensitive to condition of low connectivity,

where high values of the hop count distance between two nodes do not necessarily

imply that nodes are far from each other.
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6.6 Anisotropic Deployments

Our localization scheme has been derived under the assumptions of approximately

uniform deployment and communication range. In this section we use simulations

to evaluate the effect of irregular radio patterns and anisotropic deployment on the

algorithm’s performance.

6.6.1 Irregular Radio Pattern

The results reported in the previous section were obtained assuming an idealized radio

model, where two nodes are neighbors iff their distance is equal to or less than the

communication range R. This assumption is very strong and does not take into account

the nature of radio propagation in the space. To get an insight on the effect of multi-

path, scattering and shadowing on the transmission range, we repeated experiments

using a less ideal radio model. In particular we took into account the influence of an

additional parameter, the Degree of Irregularity (DOI) with values 0.2 and 0.4 (see

Figure 6.11). A DOI equal to 0.4 means that the effective transmission range for each

sensor is uniformly drawn from the interval [0.6R - 1.4R], where R is the average radio

range. In Figures 6.12b and 6.12c we report the experimental results for DOI = 0.2

and DOI = 0.4, showing that the localization error does not significantly increase in

conditions of irregular radio pattern (especially in the SOM_4A modification).

6.6.2 Anisotropic Networks

In addition to considering irregular radio patterns, we have simulated networks with

anisotropic layouts resulting from the presence of large obstacles (e.g. buildings) in

the region of the deployment. It is known that under such scenarios MDS, similar to

the case of low connectivity, does not perform well. The reason is that MDS uses the

hop count as a distance measure between each pair of nodes. While this approach

works well when the path connecting two nodes lies approximately on a straight line,
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Figure 6.11: Effect of Degree of Irregularity (DOI) on the transmission
range.

it generates large errors in the presence of obstacles. In this case two nodes can be

physically close even if their hop distance is large.

The large error in the case of anisotropic networks has motivated alternative

approaches where MDS is used to compute small local maps that are then stitched

together into a global map [82, 39]. Although this approach can be useful to solve

the problem in a distributed manner, the process of map stitching greatly increases

the complexity of the solution and is susceptible to large errors when the network

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Network Connectivity

A
vg

 E
rr

 (
R

)

Avg. Err (R)

MDS
SOM
SOM

3
A

SOM
4
A

(a) DOI=0.2

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Network Connectivity

A
vg

 E
rr

 (
R

)

Avg. Err (R)

MDS
SOM
SOM

3
A

SOM
4
A

(b) DOI=0.4

Figure 6.12: Average Error (R) as function of network connectivity
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Figure 6.13: Sample results for anisotropic layouts: in this case, the
SOM algorithm reduces the average localization error of 75% with re-
spect to MDS.

connectivity is low. It would be useful to have a scheme capable of localizing irreg-

ular networks without having to partition the map and encumber the complexity of

map stitching. To validate the performance of the SOM algorithm we have evalu-

ated anisotropic deployments obtained by randomly placing the nodes around few

obstacles. Two sample topologies are represented in Figures 6.13a and 6.13d.

SOM and MDS were tested by simulating 200 random networks for both the “C”

and “W” shaped maps with connectivity between 4.6 and 6.8. As in the previous

simulation, we evaluated the average error after orienting the map using four anchor

points on the perimeter. For the MDS localization scheme, the simulation results

confirmed our expectation: the average final error was large in both cases, 1.56R for

the C-shaped and 1.32R for the W-shaped network. The SOM algorithm did not suffer

the same problem and produced results with the accuracy comparable to the case of

uniform networks: 0.33R for the C-shaped network and 0.38R for the W-shaped one,

with an average error reduction of 75% with respect to MDS. As explained previously,
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the better results are due to the fact that SOM mainly exploits the constraints derived

by neighbors nodes that are placed few hops away from each other; consequently, it

does not incur in large errors trying to relate the position of nodes that are several

hops away. Figures 6.13b, 6.13d, 6.13e and 6.13f present four sample maps generated

by the MDS and SOM algorithm for the “C” and “W” topologies to give a qualitative

illustration of the results.

6.7 Computational Complexity

Recently, several research efforts have been directed toward the study of distributed

localization algorithms. This interest is motivated by the fact that centralized com-

putation is not viable in the following circumstances: 1) the communication overhead

to transfer the input data to a central unit is too high, 2) none of the devices in

the system possess the computational resources to compute the whole solution, 3)

the result is critical and introducing a single point of failure puts the reliability or

security of the system in jeopardy. In this section we analyze the overhead of our

scheme, showing that the SOM approach, although centralized, does not suffer from

the above mentioned drawbacks and is suitable for highly constrained deployments

consisting of nodes with limited hardware resources.

The algorithm operates on the basis of connectivity information, therefore each

sensor needs to communicate the set of its radio neighbors to the unit in charge of

the computation. Assuming that node IDs are coded using two bytes (up to 65536

nodes), the information can be transmitted using a fairly small size radio messages.

For example, the average connectivity of the networks in our simulations was less

than 7, thus, on average, only 14 bytes need to be transmitted by each node. Since

the amount of data can be further reduced by means of data aggregation techniques,

the overhead to transfer the initial information to the central node does not pose a

problem for many cases of practical interest.
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Having received the neighbor sets, the data is used to generate the adjacency

matrix of the network graph requiring [N(N − 1)/2]/8 bytes2 and then to compute

the table Hc with the hop count distances between nodes. The solution can be

obtained by repeating N executions of the popular Dijkstra’s algorithm or using the

Floyd’s scheme. The complexity is O(N3) in both cases, while the table needs enough

storage space for N(N − 1)/2 elements. The memory requirements for this table can

be reduced by taking into account the maximum hop count distance between any

two nodes (i.e. the network diameter). In our simulations, the average diameter

was equal to 6.19 with a maximum value of 16. Using 4 bits to code the hop-count

distances3, the size of the table is reduced to N(N − 1)/4 bytes of memory. Finally,

we need to reserve the memory space to hold the coordinates of the sensor nodes (i.e.

the SOM weights). Assuming, that each coordinate is represented with 2 bytes, the

total occupation is 4N bytes. As for the computational complexity of our approach,

the iterative solution allows a trade-off between accuracy and execution time (cf.

Section 6.4). Each iteration determines the BMU (requiring N comparisons), and

then applies the update rule 5.2 to the map weights. Considering that the radius of

the neighborhood function shrinks from a value initially equal to the network radius

and then goes to zero, the average number of weight updates is N/2.

While the algorithm executes in a few second on a PC, we have implemented a

TinyOS [54] version to test the scheme on WSN nodes. The code was executed using

TelosB [74], a low cost, commercially available sensor node. The board is equipped

with Texas Instrument MSP430 F1611, a low power 16-bit RISC microcontroller

featuring 10KB of RAM, 48KB of code memory and an internal oscillator working at

the frequency of 8MHz. The algorithm was implemented as reported in Section 5.5,

with the only exception that the Gaussian neighborhood function was replaced with

a triangular function, which produces similar results using much less computation.

Table 6.1 reports the memory occupation of the data structures described above and
2We recall that the graph is undirected, so both the adjacency matrix and the hop count table

are symmetric.
3We note that even if some hop count distance exceeds the upper limit allowed, replacing this value

with the upper limit does not have a noticeable impact on the algorithm because the interactions
between units far from each other are very weak.
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N. Nodes Memory Exec. Hc Exec. 1000 iter.
36 0.42 KB 1 sec 62 sec
64 1.48 KB 6 sec 102 sec
100 3.42 KB 22 sec 156 sec

Table 6.1: Memory requirements and execution time of the SOM algo-
rithm on a TelosB node.

the execution time to compute the table Hc and then to perform 1000 iterations of

the localization algorithm.

As can be seen from the table, the limited hardware resources of an inexpensive

sensor node are sufficient to generate a solution within a limited amount of time even

for networks of 100 nodes. During the computation, the radio can be turned off and

the microcontroller draws only few milliamp of current, with negligible impact on the

energy budget of the sensor node. Since the algorithm runs with limited overhead on

the same hardware used to implement the sensing task, the system reliability can be

improved by simply running the computation on a few back-up units.

6.8 Summary of Simulation Results

In Table 6.2 we report the 95% confidence interval for the simulation results of MDS,

SOM, SOM3_A and SOM4_A. Figure 6.14 reports a plot wiht the average error

obtained in each of the 9360 topologies (DOI=0) simulated.
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Algorithm Network Connectivity
4 6 8 10 12

DOI=0.0
MDS 0.608± 0.032 0.292± 0.017 0.256± 0.013 0.220± 0.012 0.190± 0.009
SOM 0.522± 0.034 0.233± 0.011 0.204± 0.005 0.196± 0.005 0.202± 0.006
SOM_3A 0.465± 0.034 0.234± 0.017 0.195± 0.010 0.214± 0.020 0.234± 0.016
SOM_4A 0.286± 0.012 0.171± 0.003 0.167± 0.002 0.177± 0.004 0.199± 0.002

DOI=0.2
MDS 0.678± 0.049 0.376± 0.025 0.376± 0.025 0.326± 0.022 0.217± 0.010
SOM 0.582± 0.044 0.274± 0.017 0.274± 0.017 0.231± 0.008 0.218± 0.004
SOM_3A 0.516± 0.048 0.268± 0.029 0.268± 0.029 0.204± 0.012 0.256± 0.023
SOM_4A 0.323± 0.015 0.195± 0.005 0.195± 0.005 0.181± 0.005 0.214± 0.003

DOI=0.4
MDS 0.783± 0.047 0.473± 0.022 0.400± 0.021 0.325± 0.016 0.279± 0.010
SOM 0.748± 0.063 0.398± 0.023 0.322± 0.015 0.286± 0.007 0.273± 0.008
SOM_3A 0.656± 0.055 0.393± 0.040 0.322± 0.033 0.306± 0.027 0.294± 0.024
SOM_3A 0.393± 0.017 0.272± 0.010 0.236± 0.006 0.247± 0.005 0.250± 0.004

Table 6.2: 95% confidence intervals of the simulation results.
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Figure 6.14: Error summary for all the simulated topologies.
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Chapter 7

Directional Antennas

The range-free, anchor-free localization algorithm presented in the last two chapters

computes the node positions on the basis of radio connectivity, a piece of informa-

tion that is readily available because obtained from the radio transceiver. The use

of additional information, such as range or angle estimates, would allow for better

accuracy, but the hardware necessary to obtain this data needs to be simple and com-

patible with the limited resources available at each sensor node. In this chapter, we

introduce an inexpensive and simple directional antenna1 that can be used to improve

communication among nodes and also to obtain angle information useful in solving

the localization problem. The following sections presents experimental results that

characterize communication improvements in different settings, while Chapter 8 will

address the problem of using the antenna to derive angle information.

7.1 Introduction

The directional antenna (DA) is an established technology that is effective in im-

proving the performance of wireless networks. The ability to radiate the RF signal
1The antenna was developed at the Microelectronics Lab, University of Florence.
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toward the receiver results in a more efficient utilization of the power, in a better link

quality and in an increased transmission range. In addition, since communication

is restricted in space, interferences between devices transmitting at the same time

are reduced and spatial reusability can be exploited to increase network capacity and

throughput [34, 96, 9]. While these characteristics have made DAs suitable for cellular

towers and base stations, the use of directional antennas in ad-hoc wireless networks

and WSNs is not equally widespread, mainly because of the need to design specific di-

rectional protocols. Many extensions have been proposed to the popular IEEE 802.11

MAC layer [9, 46, 21, 89] to support DAs and several other works have addressed

the problem of directional routing [84, 90, 20, 40], but, in general, the lack of central

coordination typical of ad-hoc networks makes difficult to fully take advantage of the

directive technology, especially when nodes are mobile [8].

In sensor networks applications, although simplified communication protocols2

can be adopted [79, 24], the main limitation is given by the complexity (cost and

size) of this technology, which is not suitable for nodes that strive to be simple, small

and inexpensive. Nevertheless, as radio communication moves to higher frequencies

and antenna dimensions shrink, the use of DAs on sensor nodes appears not only

feasible [53], but also desirable to compensate for the higher path loss intrinsic of

shorter wavelengths, to ensure higher link quality and to implement a form of antenna

diversity [95].

In light of the above considerations, we analyze a switched-beam, directional

antenna that satisfies the size, cost and complexity constraints typical of a sensor

node. The antenna, designed for operations in the 2.4GHz ISM band (e.g. using

the IEEE 802.15.4 standard), has dimensions comparable to those of commercially

available sensor nodes (it can actually be used to shelter the node itself), is built using

inexpensive materials and implements a simple selection logic (the beam selection is

implemented using two digital lines). After a brief description of the design principles
2The design of MAC protocols using directional antennas is in part simplified by the fact that

sensor nodes are static and transmissions are sporadic. In addition, directive routing protocols can
exploit the fact that sensor nodes typically transmit all their data to a single aggregation point (a
cluster head or a base station).
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Figure 7.1: Two views of the Four-Beam Directional Antenna (FBDA).

provided in section 7.2, we use in-field experiments and theoretical fading models to

characterize the mote-to-mote link in different environments.

7.2 Four-Beam Directional Antenna

The antenna used in our test, the Four-Beam Directional Antenna (FBDA), is com-

posed of four coaxially fed planar patch antennas arranged in a “box like” structure

as shown in fig. 7.1. Each face is realized on a two-layer RF4 substrate [7] having

planar dimension of 56mm × 56mm and thickness of 2.4mm. The four patches, which

operate in linear polarization, share a common design that has been optimized by

using the Ansoft-HFSS CAD [3] to work in the 2.4 GHz ISM band. The mechanical

arrangement of the four patches and their coaxial feeding is such that the vertical

axis of the box coincides with the intersection of the E-planes of the single patches

(i.e. the E-field is perpendicular to the ground).

The RF signal is distributed to the four faces by a single-pole four-trough switch,

which is controlled by two digital lines and allows the wireless node to dynamically

select the face to use (see Section 7.8). The loss due to the switch, the distribution

network and the mismatches are compressively evaluated in about 1.5 dB within

the selected ISM band. The characterization in the anechoic chamber has given

the patterns reported in Figure 7.2. In spite of the low-cost substrate and reduced

thickness, the patches gain measured to the external SMA connector, hence including
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Figure 7.2: Radiation patterns of the four antenna faces. The patch
used for transmission/recepetion is selected using two digital lines.

the losses listed before, are comprised between 8.3dBi and 7.5dBi. In Figure 7.2

we observe that the combined patterns ensure a uniform coverage of the 360 degree

horizon.

7.3 Link Quality Experiments

In this section we begin the characterization of the FBDA with a series of in-field ex-

periments based on commercially available WSN nodes. Although these experiments

are not designed to be an exhaustive test for all possible operative conditions, the
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Figure 7.3: The directional antenna connected to the TelosB board.

measures attempt a characterization of communication in two different environments:

i) a outdoor field where multi-path interferences are absent (except for the reflection

from the ground) and ii) an indoor setting where the presence of reflecting surfaces

and moving people is cause of severe multi-path effects. The results found in these two

opposite scenarios can be used to derive more general design guidelines to implement

WSNs using FBDAs.

The hardware chosen for our tests is the TelosB platform [64], a low-power sensor

board equipped with the Chipcon CC2420 radio module [19]. The transceiver oper-

ates in the 2.4 GHz band using O-QPSK modulation with Direct Sequence Spread

Spectrum (DSSS) coding, achieves a maximum data rate of 250Kbps and is com-

patible with the PHY and MAC layers defined by the new IEEE 802.15.4 standard.

The omnidirectional (OD) antenna integrated on the TelosB board, an Inverted-F

microstrip antenna (PIFA), has been used as baseline for our tests

7.3.1 Control Software

The tests were performed using a custom software designed to measure relevant radio

link parameters and to evaluate the Packet Error Rate (PER) during communica-

tion between two sensor nodes. The application software consists of three software

modules:

62



Telos B

Java Software

USB

Base Station
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TX Power
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LQI
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TX Power
RSSI
LQI
…

Figure 7.4: A block diagram of the software used to execute the mea-
sures.

1. A Java application running on a PC.

2. A TinyOS module executed by a node connected to the PC (the base station).

3. A TinyOS module that controls each of the nodes (target nodes) used for the

experiment.

In the default operative mode, the Java software uses the base station (BS) to transmit

beacon messages addressed to one or more target nodes in radio range (see Figure 7.4).

Upon reception of a beacon, the target node records the Radio Signal Strength Index

(RSSI) and the Link Quality Indicator (LQI) of the incoming packet3. The first value

is expressed in dBm and defines the average power of the received radio signal, while

the LQI is a new metric introduced by the IEEE 802.15.4 that measures the error in

the incoming modulation and provides an estimation of the expected delivery ratio on

a given radio link. The RSSI and LQI values recorded by the target node, together

with the transmission power used by the BS, characterize the uplink channel, i.e. the

link connecting the base station to the node. This information is transmitted back

to the base station, which in turn records the parameters (transmission power, RSSI

and LQI) that define the downlink channel (the link connecting the mobile node to

the base station). The PC software collects the uplink and downlink information,

displays them in a graphical form and provides an option to log the data into a file.

The software allows the user to control the transmission power for each node used

in the test and to activate the four digital I/O lines exposed by the TelosB connector,
3These values, which are both coded using 8 bits, are read from the CC2420’s internal registers

upon reception of a successfully decoded packet
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which are used to select the active FBDA patch. In addition, the software supports

a feature for the evaluation of the packet error using three different modes:

• Upload P.E.R.: the test is executed by transmitting a train of radio messages

from the base station to a specific target node. The transmission power, the

number of messages and the delay interval are user selectable parameters. The

target node records the number of messages received, the number of messages

lost4, mean and standard deviation of the uplink values (RSSI and LQI). Re-

sults are sent back to the base station at the end of test for data logging and

processing.

• Download P.E.R.: the test is analogous to the upload test, but the packets

are sent from the mobile node to the base station. In this case, in addition to the

aggregate values (mean and variance), the RSSI and LQI values of each received

packet are logged to enable more accurate data analysis (cf. Section 7.6).

• Roundtrip P.E.R.: the test is executed sending beacon messages from the

base station to the target node, which in turn replies with an ACK message

for each received packet (the ACK message is sent right after the reception of

a message from the base station, before the arrival of the next one). The RSSI

and LQI values (uplink and downlink) for each packet are logged for further

analysis.

7.4 Outdoor Experiments

In the first set of experiments we measured the RSSI, LQI and the PER using the

roundtrip mode described in the previous section. The experiments were performed

in an open, grassy field with the BS and the target node placed at 1.3 m above

the ground (see Figure 7.6). The values were measured at step of two meters using

message sequences of 200 radio packets (100 messages in each direction) with a delay
4Each message include a sequence number that is used in determine the number of messages lost.
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Figure 7.5: A screenshot of the control software used to execute the
experiments.

interval of 100 ms between each message sent by the BS. Both nodes were set to use

a transmission power of 0 dBm (1mW), which is the maximum power allowed by the

transceiver.

Two different antenna configuration were tested:

1. Directional antenna to directional antenna (DD): the two FBDA units

were oriented with the active patches pointing toward each other (i.e. the di-

rection of maximum angular gain).

2. Omnidirectional antenna to omnidirectional antenna (OO): the two

TelosB board were oriented with the tail of the BS facing the head (the part

Figure 7.6: Setup used for outdoor experiments.
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with the USB connector) of the target node. Since the radiation pattern for

the PIFA integrated on the TelosB is not perfectly omnidirectional ([64]) and

in a real deployment is hard (or impossible) to place the nodes to achieve the

maximum gain, we chose this configuration as a representative of the average

performance achievable with this antenna configuration.

Figure 7.7 reports the average values for the RSSI, LQI and PER measures. The

plots show that the higher gain of the directional antennas results in an increased

link budget of +20dB respect to the OO configuration, with an extension of the

communication range from 140 m to over 350 m. The graphs also shows that the

P.E.R. is practically constant and equal to zero until the end of the communication

range for the DD configuration. In the OO case, the PER follows a similar behavior,

except for the deep fade null around 25m which causes almost 90% of the packet to

be lost.

The values measured in our experiment are in line with those of other researchers

that used high gain antennas to extend the communication range of sensor nodes. In

[92], 8dBi omnidirectional antennas were used in an active volcano deployment to

implement a WSN with radio hops of 200-400m, while in a recent work [76], TelosB

boards were tested with other high-gain antenna configurations: a 17dBi 90◦ sector

antenna and a 24dBi parabolic grid with a beam width of 8◦. The maximum reported

ranges are comprised between 500m and 800m. Although these values are higher than

those measured in our experiments, we note that the antennas used in [76] are much

bulkier and expensive than the FBDA. In any case, the conclusion that can be drawn

from all these experiments are the same and suggest that the use of DAs is promising

in WSN deployed over large areas where, without increasing the transmission range,

multiple OD radio hops can be replaced by few directional radio links. We observe

that reducing the total number of hops not only decreases the transmission delay and

the probability of error, but also has a considerable impact on the energy conservation

within the network since it decreases the total number of transmissions and receptions.

In addition, as pointed out in [76], the use of DA can greatly simplify the network
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Figure 7.7: RSSI, LQI and PER measured using directional antennas
(DD, plots on the left) and the internal TelosB antenna (OO, plots on
the right).
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architecture since many nodes might be able to communicate with the base station

using a single hop, hence eliminating the need of multi-hop protocols. We note that

managing multi-hop protocols can be problematic, especially when nodes operate in

low duty-cycle mode5 and synchronized wake up’s need to be scheduled to allow

neighboring nodes to exchange data packets.

7.5 Large-Scale Fading Models

In this section we analyze the data collected during the previous in-field experiments

using the Two-Ray propagation model [77]. This model, which takes into account the

contribute of the wave reflected from the ground, is often used to predict the average

signal power at large distances from the transmitter. Before comparing the experi-

mental data with the model, we review the basic laws that regulate RF propagation

in free space and in presence of reflections from the ground.

7.5.1 Review of RF Propagation

Free Space Propagation

The Friis’ equation predicts the power received as a function of the distance between

the source and the destination according to the following formula:

Pr(d) =
PtGtGr

L

(
λ

4π

)2 (
1
d

)2

, (7.1)

where Pt is the transmission power, Gt and Gr are the transmitter and receiver

antenna gains, L, with (L ≥ 1), is a factor that accounts for the losses in the system

and d is the distance between the two units. The term λ is the wavelength of the radio

signal; in our case, working at a frequency of about f = 2.45GHz, the wavelength is
5When a node operates in low duty-cycle mode, its radio is turned off most of the time to preserve

energy.
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equal to:

λ =
c

f
=

3 · 108

2.45 · 109
= 0.1224 m. (7.2)

The Friis’ equation is useful to compute the path-loss, which defines the difference

between the transmitted power and the power available at the receiver (as a function of

distance). During aWSN deployment, being able to estimate the path-loss in a specific

environment is important to obtain an estimate of the maximum communication range

among nodes. The path-loss expressed in dB is defined as:

PL(d)dB = 10 log10

(
Pt

Pr

)
= −10 log10

(
GtGrλ

2

(4π)2d2L

)
. (7.3)

Since it is often difficult to obtain correct estimates for the antenna gains Gt, Gr and

the system losses L, while it is relatively easy to measure the received power at a given

distance, it is easier to express the received power by taking into account the path-loss

relative to a reference distance d0, which allow us to write the received power as:

Pr(d)dB = Pr(d0) + 20 log
(

d0

d

)
. (7.4)

According to the expression above, the power available at the receiver decreases of

6 dB every time the distance between the transmitter and the receiver is doubled.

Taking into account the receiver sensitivity (about -94 dBm for the CC2420) is possible

to estimate the maximum communication range by using a single power measurement

taken at a reference distance d0.

As a final note, we remind that the free space model is valid for communication

that occur in the far-field of the antenna, at a distance df that verifies the following

conditions:

df ≥ 2D2

λ
, (7.5)

df À D, (7.6)
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Figure 7.8: The contribute of the signal propagated by line of sight and
the wave reflected from the ground.

df À λ, (7.7)

where D is the largest physical dimension of the antenna (D ∼= 5cm for the FBDA).

Two-Ray Propagation Model

The Two-Ray propagation model takes into account the contribution of the RF signal

reflected from the ground (see Figure 7.8). The total E-field at the receiver is given

by the sum of ELOS (the line of sight component) and Eg (the component reflected

from the ground):

ETOT (d, t) = ELOS(d′, t) + Eg(d′′, t), (7.8)

ELOS(d′, t) =
E0d0

d′
cos

(
ωc

(
t− d′

c

))
, (7.9)

Eg(d′′, t) =
E0d0

d′′
cos

(
ωc

(
t− d′′

c

))
. (7.10)

The components ELOS and Eg reach the destination at distance d after covering two

different distances d′ and d′′. The relationship between d, d′, d′′ and the heights of

the transmitter and receiver (ht and hr) can be computed using the method of images

(see Figure 7.8):

d′ =
√

(hT − hR)2 + d2, (7.11)
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d′′ =
√

(hT + hR)2 + d2. (7.12)

The length difference between the paths traveled by the two rays causes a phase

difference θ∆ between the waves impinging on the receiver. The phase difference is

given by:

θ∆ =
2π∆

λ
=

∆ωc

c
, (7.13)

where ∆ = d′′ − d′ is the length difference between the two paths.

To determine the resulting signal, in addition to considering the phase difference

θ∆, we also need to consider the polarization of the antenna and the effect of the

reflection. The FBDA antenna has a vertical polarization with the E-plane perpen-

dicular to the ground (see Section 7.2), hence when the signal bounces off the ground,

the reflected wave has a 180◦ phase delay. We also note that, as the distance between

the transmitter and the receiver increases, the angle of incidence with the ground be-

comes small and almost all the energy is reflected. Since for high distances the path

difference ∆ becomes negligible, the magnitude of the two E-fields is approximatively

the same:

∣∣∣∣
E0d0

d′

∣∣∣∣ ≈
∣∣∣∣
E0d0

d′′

∣∣∣∣ . (7.14)

According to these considerations, the resulting E-field can be expressed as:

ETOT (d, t)|t= d′′
c

=
E0d0

d′
cos

(
ωc

(
d′′ − d′

c

))
− E0d0

d′′
cos 0◦ (7.15)

=
E0d0

d′
cos(θ∆)− E0d0

d′′
,

where the value has been evaluated at a time instant t = d′′/c. The above expres-

sion indicates that at any given time instant, the phase differences between the two

71



components is θ∆:

ETOT (d) =
E0d0

d
(cos θ∆ + j sin θ∆)− E0d0

d
, (7.16)

therefore the module of ETOT is given by:

|ETOT (d)|2 =
E0d0

d

√
(cos θ∆ − 1)2 + sin2 θ∆ (7.17)

=
E0d0

d

√
2− 2 cos θ∆

= 2
E0d0

d
sin

(
θ∆

2

)
.

The expression above fully characterizes the signal propagation in presence of a re-

flected component from the ground.

Relating the Electrical Field to the Received Power

Once the E-field is known, it can be related to the received power Pr(d) by writing

the Friis’ free space equation in a different form:

Pr(d) = PdAe =
(

PtGt

4πd2

) (
Grλ

2

4π

)
. (7.18)

In the expression above, Pd is the power flux density [W/m2], and Ae is the effective

antenna aperture [m2]. The power flux density is related to the E-field as follows:

Pd =
(

PtGt

4πd2

)
=

E2

Rfs
=
|E|2
377Ω

, (7.19)

where Rfs = 377Ω is the intrinsic impedance of the free space. Using the previous

expression, we can relate the E-field resulting from the two components (ETOT and

Eg) to the power at the receiver:

P2RAY (d)dB =

∣∣2E0d0
d sin

(
θ∆
2

)∣∣2
377Ω

(7.20)
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Figure 7.9: Phase difference and gain in the Two-Ray Model

=
1

377Ω

(
E0d0

d

)2

+ 20 log
[
2 sin

(
θ∆

2

)]

= Pfs(d) + ∆2RAY (d),

where Pfs(d) is the power received due to free space transmission and ∆2RAY (d) is

an additional term that accounts for the contribute of the reflection from the ground.

∆2RAY (d) varies in function of the distance through the difference of phase as de-

scribed in (7.13).

The plots in Figure 7.9 show that the contribute of the reflected signal rapidly

fluctuates in the first 50 meters with oscillations comprised between +6dB and -18dB

(theoretically it goes to −∞dB). After 150 m the contribute becomes negative.

7.5.2 Comparison With The Experimental Data

In Figure 7.10 we report a comparison between the value measured in the outdoor

experiments and the received power predicted by the free-space equation and the

Two-Ray model. The models were compared to the measured data by adding a gain

value determined experimentally, in fact, although the transmission power (+0dBm)

is known, it is difficult to accurately estimate the amount of the system losses (7.1).
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Figure 7.10: Comparison between measured data and the Two-Ray
model.

The results show a very good correspondence between the values computed using the

Two-Ray model and the measured values. The accuracy of the Two-Ray model in

predicting the received power suggests the possibility to use it in future simulations

to evaluate the path-loss in WSN applications using both omnidirectional and FBDA

antennas.

7.5.3 Effect of Antenna Polarization

As mentioned earlier, the FBDA antenna operates in vertical polarization (with the E-

field perpendicular to the ground), while the PIFA antenna integrated on the TelosB

board has a polarization that, given the characteristic of this kind of antenna, re-

sults difficult to predict. In order to evaluate the system performance when different

antennas are used within the same WSN, we repeated the experiments described in

Section 7.3. In Figure 7.11a we report the RSSI values measured in the previous

experiment together with the values measured when a FBDA is used to exchange

messages with an OD node. The plot shows that when the communication involves

nodes with different antennas (FBDA and PIFA), the received power and the trans-

mission range are about the same than the values measured when using two OD

antennas (i.e. any increment in the link budget due to the use of a directive antenna
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Figure 7.11: Signal Strength as function of distance for different antenna
configurations

is lost). The explanation for the poor performance of this configuration is given by

the difference of polarization between the two antennas, which cause considerable

losses at the receiver. To get a further insight on the effect of antenna polarization,

we have repeated the range measurements using a DA with circular polarization6. In

this case, the link budget when using an hybrid antenna configuration improves as

shown in Figure 7.11b.

7.6 Indoor Experiments

The signal strength measurements were repeated indoors to characterize the effect

of multipath interferences due to the presence of reflecting surfaces and moving ob-

jects in proximity of sensor nodes. In this case, the signal received is subjected to

rapid fluctuations due to random components that sum at the receiver. In the test

performed indoors, we placed the nodes at approximately 5 meters of distance in a

lab environment with several pieces of equipment near the experiment area. The line

of sight between the nodes was unobstructed, but the signal was perturbed by the

presence of people moving in proximity of the nodes. The RSSI data was collected
6The circular polarization can be seen as a combination of two orthogonal antennas with linear

polarizations.
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Antenna Configuration Mean Variance
Omni-Omni -86.58 dBm 6.33
Omni-FBDA -78.75 dBm 2.24
FBDA-FBDA -63.93 dBm 1.91

Table 7.1: Mean and Variance of RSSI measured indoors with different
antenna configurations.

using the download PER mode described in Section 7.3.1. The target node was set to

transmit a message every 50 ms with a power of -25dBm (the minimum transmission

power programmable on the CC2420 transceiver). The number of RSSI measures col-

lected was about 1200 for each antenna configuration. Figure 7.12 reports the RSSI

distribution for three different cases:

1. Omni-Omni: two TelosB nodes were used to exchange the radio packets.

2. FBDA-Omni: the messages were transmitted by a node with FBDA antenna

and received by a TelosB node with OD antenna.

3. FBDA-FBDA: both nodes were equipped with a FBDA antenna.

The results indicate that when communication is affected by multipath fading,

the use of directive antennas greatly increases the signal strength and reduces the

variability of the received power. Table 7.1 reports the mean and variance of the

RSSI data, showing that the link budget increases of +7.8dBm when using just one

directional antenna and of +22dBm when using FBDAs on both sides of the radio

link. Also, the variance is reduced by 65% when using one FBDA and by 70% when

using two FBDAs.

7.6.1 Small-scale Fading Model

Similarly to what done in Section 7.5, we analyze the measured data using a theoret-

ical fading model. The model used is the Ricean distribution [77], a statistical model

commonly used to describe the power distribution at the receiver in presence of mul-

tipath fading. The Ricean probability density function (pdf) defines the probability
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Figure 7.12: Distribution of the received signal strength in presence of
multi-path fading for three configurations: Omni-Omni, Omni-FBDA,
FBDA-FBDA.

of receiving a signal with amplitude of v volts, (v ≥ 0) as:

p(v) =
v

σ2
e−

(v2+A2)
2σ2 I0

(
Av

σ2

)
, (7.21)

where I0 is the modified Bessel function of the first kind and zero order, A is

the peak amplitude of the LOS component and σ2 is the time-average power of the

received radio signal. The distribution is described by the parameter K = A2/2σ2,

which defines the ratio between the LOS component and the contribution of secondary

rays due to multi-path propagation.
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Figure 7.13: Samples of Ricean distribution for various parameters K.

Before being able to analyze the measured data using the Ricean distribution, we
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Figure 7.14: Distribution of the received signal strength with Ricean
pdf’s.

need to relate the amplitude of the signal (in volts) to the received power (in dBm).

The power at the receiver is given by:

Pr =
V 2

ant

Rant
, (7.22)

where Vant is the voltage at the terminals of the antenna and Rant is its resis-

tance (50Ω). After converting the RSSI values into volts, we used the MATLAB

fminsearch function to find the parameters A, σ that minimize the difference be-

tween the measured data and those computed using the Ricean distribution. As

initial estimates for A and σ, we used the mean and the variance of the data:

A0 = mean(RSSIvolt), σ0 = std(RSSIvolt). This choice was motivated by the fact

that, for large values of the parameter K (K À 1), the Ricean distribution is ap-

proximatively Gaussian about the mean (cf. Figure 7.13). Figure 7.14 shows the

distributions of the measured RSSI data together with the Ricean distribution: the

use of FBDA antennas increases the K factor from 8.3 dB to 15.7 dB, demonstrat-

ing a substantial increment of the LOS component and reduction of the multi-path

interferences. Again we note a good correspondence between the measured data and

those calculated using the fading model, therefore the parameters found will be useful

in future system simulations.
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Figure 7.15: IEEE 802.11 and IEEE 802.15.4 channels (Copyright 2005
by Penton Media Inc).

7.7 Rejection to 802.11 Interferences

In a typical WSN application, the information gathered by the sensors is collected by

a sink node and then forwarded to a gateway (e.g. a PC with an Internet connection)

that dispatches the data to the remote users. In this section we consider the case

where the gateway uses an IEEE 802.11g link that might interfere with the packets

received by the sink node. Although four of the sixteen channels defined by the IEEE

802.15.4 standard fall in the guard band of 802.11 channels and thus are immune from

interferences (see Figure 7.15), as the number of 2.4 GHz devices increases, it might

be necessary to use one of the “non-safe” 802.15.4 channels.

To evaluate the effects of possible interferences between IEEE 802.11 devices and

IEEE 802.15.4 nodes, we propose an experiment where the Chipcon CC2420 is set to

operate on Ch.17 and the sink node is positioned close to an 802.11g device working

on an overlapping band (Ch. 6). In our setup, the 802.11g source was located at 1.5

meters from the sink node, forming a 90 degree angle with the axis of the face used for

reception (see Figure 7.16). The packets were transmitted by a FBDA node located

at 5m from the sync node and set to -25dBm of power.

Figure 7.17 reports the effect of the interference on the delivery ratio and the Link

Quality Index (LQI). When the sync node uses an OD antenna, the delivery ratio and
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the LQI drops rapidly as the 802.11g interference source transmits above a value of -33

dBm. In the case of a sink node with directional antenna, the FBDA attenuates the

interferences of about 14 dB and the quality of the link is not substantially affected

until the 802.11g interference reaches the -19 dBm.

The results can be explained by the fact that the error probability PE is pro-

portional to the interference strength (PI) at the receiver input. In the OQPSK

modulation, the error probability is a function of the Signal to Noise and Interference

Ratio (SINR) and the process gain of the coding (9dB in the case of DSSS coding):

PE = erfc(SINR · PG), (7.23)

−45 −40 −35 −30 −25 −20 −15
10

20

30

40

50

60

70

80

90

100

WiFi Strength [dBm]

Li
nk

 Q
ua

lit
y 

In
di

ca
to

r 
−

 L
Q

I [
%

]

LQI in presence of IEEE 802.11 interferences

FBPA
Omni

(a) LQI

−45 −40 −35 −30 −25 −20 −15
0

10

20

30

40

50

60

70

80

90

100

WiFi Strength [dBm]

D
el

iv
er

y 
R

at
io

 [%
]

Delivery Ratio in presence of IEEE 802.11 interferences

FBPA
Omni

(b) Delivery Ratio

Figure 7.17: LQI and Delivery Ratio as function of the 802.11 interfer-
ence power.
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where the SINR is given by:

SINR =
PRX

PN0 + PI
. (7.24)

In the above expression, PRX is the power of the 802.15.4 signal, PN0 is the noise

power and PI is the power of the 802.11g interference. The interference power PI can

in turn can be written as:

PI = K · P i
TX · Lp(d) ·G(θ), (7.25)

where P i
TX is the power of the 802.11g source, Lp(d) is the path loss as function of the

distance d and G(θ) is the gain of the antenna in the direction of the source. Finally,

K is a factor that accounts for the portion of IEEE 802.11g power that falls in the

802.15.4 channel (approximately 19%) [83]. Having fixed the distance d and the angle

θ, the link quality is solely affected by the interference power P i
TX . In our experiments,

the angle θ was equals to 90 degrees with respect to the active face (patch 3) and

the increased immunity to the interference can be justified by the reduced gain of the

antenna in that direction. Although the experiment was conducted in the lab using

small power levels and short distances, the values can be easily scaled to determine

how the sink node should be positioned with respect to the 802.11g source to avoid

interferences in a real-case scenario.

7.8 Angular Diversity

In a WSN application each sensor exchanges information with other nodes located at

different positions, therefore a switching policy is needed to determine the patch to be

used for each communication. If the network is static and node positions are known,

these data can be preloaded into each unit and the selection can be implemented by

choosing the face pointing in direction of the other node. Anyway, positions are not

always known in advance (ad hoc deployment) or the face pointing toward the other

81



30 40 50 60 70 80 90 100 110

−90

−85

−80

−75

−70

−65

−60

−55

−50

−45

sample no.
S

ig
na

l S
tr

en
gt

h 
[d

B
m

]

omni
patch1
patch2
patch3
patch4
max patch

RSSI on the four FBDA faces 

Figure 7.18: Samples of signal strength measured on the four antenna
patches.

node might not be the best selection due to the presence of multipath, reflections and

scattering of the signal. In these cases the best patch can be dynamically determined

during the setup phase of the network by exchanging a few radio beacons with the

surrounding nodes and selecting the face that ensure better signal strength. While

this problem has been addressed in relation to MAC and routing protocols for ad-hoc

WSNs [79, 24], we also note that by allowing a node to dynamically switch among

different beams, the directive antenna implements a form of angular diversity that

increases the reliability of communications [95]. This is especially important when

nodes are static and the presence of a deep fade null can affect the communication

for an indefinite period of time. Using the four faces of the FBDA, the node is given

the opportunity to choose among four low correlated radio channels, thus increasing

the probability of successful communication. In the last experiments a node with the

directive antenna is used to communicate with an OD node that is moved through

different positions. Figure 7.18 compares the signal strength received at the four

patches with the signal received by an OD antenna placed at the same position.

While all of the lines fluctuate and have deep fades (see Figure 7.18), the ability to

select the face with maximum RSSI ensure stable receptions. In our experiment, the

correlation coefficient for the strength values received by different faces was comprised

from a max of 0.43 for face 1 and 2, to a min of 0.15 for face 1 and 3.
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Chapter 8

Deriving Angle Information

From Directional Antennas

As seen in previous sections, directional antennas are effective in improving the link

budget and in reducing the signal variability due to multi-path fading. Another advan-

tage of DAs is that they can be used to estimate Angle of Arrival (AoA) information

useful in solving the localization problem [67, 94, 60]. In the following sections we

use the antenna presented in Chapter 7 to implement an algorithm that estimates the

angular position of a node in proximity of a base station with FBDA.

8.1 Angle and Range Information in Free Space

We consider a target node equipped with an omni-directional antenna that is trans-

mitting a radio packet to a base station equipped with a FBDA (see Figure 8.1). By

measuring the power received on two faces of the antenna, following a scheme similar

to [94, 60], we are able to derive the equations that define the position of the target

node in the 2D space. According to the Friis’ free space equation:
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Pr1 =
PtGtGr1(θ1)

r1

(
λ

4π

)2

, (8.1)

Pr2 =
PtGtGr2(θ2)

r2

(
λ

4π

)2

, (8.2)

where Pr1 and Pr2 is the power of the signal received on patch 1 and 2 when the

target node transmits a signal with power Pt using an OD antenna with gain Gt. The

values Gr1(·) and Gr2(·) are the angular gains of the patches 1 and 2 and depend

on the angles of arrival θ1, θ2. The position of the target node relative to the base

station is fully described by the unknown values r1 and θ1. The distance and the

angle relative to the second patch (r2 and θ2) are derived using the cosine law:

r2 =
√

r2
1 + d2 − 2r1d cos(α1), (8.3)

α2 = arcsin
(

r1

r2
sin α1,

)
(8.4)

where d is the distance between the center of the two patch antennas and α1 and α2

are the angles as defined in Figure 8.1. The relationship between the angles α1, α2
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are derived by considering the following equations:

π = α1 + α2 + α3, (8.5)

α1 =
3
4
π − θ1, (8.6)

α2 =
3
4
π + θ2. (8.7)

Solving the equations above we find that:

θ2 = θ1 − π

2
− α0. (8.8)

The notation can be simplified by taking into account the fact that in many situations

the target’s distance from the FPDA will be much larger than the value d (r1, r2 >> d)

and therefore r1 ∼= r2 and α0
∼= 0. Under these conditions, the equations that relates

the angles and distances reduce to:

r2 = r1, (8.9)

θ2 = θ1 − π

2
. (8.10)

Using these equations, the power received on patches 1 and 2 can be rewritten as

function of r1 and θ1 only (we have omitted the constant term
(

λ
4π

)2
):

Pr1 =
PtGtGr1(θ1)

r1
, (8.11)

Pr2 =
PtGtGr2(θ1 − π/2)

r1
. (8.12)

It follows that the ratio between the power received on the two patches is equal to

the ratio between the antenna gains for angles θ1 and θ2:

Pr1

Pr2
=

Gr1(θ1)
Gr2(θ1 − π/2)

. (8.13)
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Since the angular gains Gr1(·) and Gr2(·) are not given in analytical form1, a solution

to equation (8.13) can only be obtained using numerical methods to find the value of

θ1 that satisfies the equality, or at least minimize the difference between the ratios

Pr1/Pr2 and Gr1/Gr2:

θ1 = arg min
θ

∣∣∣∣
Pr1

Pr2
− Gr1(θ1)

Gr2(θ1 − π/2)

∣∣∣∣ . (8.14)

Once the angle θ1 has been determined, the target’s distance r1 is found by inverting

(8.2):

r1 =
PtGtGr1(θ1)

Pr1

(
λ

4π

)2

. (8.15)

The relationships between the power received on the first patch and patch n.3

and n.4 are derived using a similar approach (see Figure 8.2).

In conclusion, assuming that the target node is at a distance r such that r À d,

the power levels received on the different antenna patches are related by the following

system of equations:

Pr1

Pr2
=

Gr1(θ1)
Gr2(θ1 − π/2)

, (8.16)

Pr1

Pr3
=

Gr1(θ1)
Gr3(θ1 + π)

, (8.17)

Pr1

Pr4
=

Gr1(θ1)
Gr4(θ1 + π/2)

. (8.18)

In the next sections, we will use the relationships derived here to estimate the target’s

angular position θ1. We note that although, in principle, we could also estimate the

distance r1 using (8.15), we will not to attempt to compute this value because it can

be determined only if the exact values of Pt and Gt are known. Also, since equation

8.15 assumes a free space propagation model, in real applications we would need to

estimate the path-loss exponent for the environment where the FBDA operates. The

angular position θ1, instead, can be recovered by only taking into account the power
1We use the radiation patterns described in Section 7.2, which are obtained through measurements

in an anechoic chamber.
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Figure 8.2: Distances and angles of a target node relative to patches
1-3 and patches 1-4.

received on the four faces and the angular gains (i.e. the radiation patterns of the

four patches).

8.2 Implementation Issues

In the previous section we have derived the equations that describe how the power

received on the four faces varies as a function of the target position (r1, θ1). The un-

derlying assumption is that a packet transmitted by the target device can be received

simultaneously by all the antenna elements and that the four power levels Pr1, . . . , Pr4
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can be measured at the same time. This is not possible with the FBDA because the

patches are controlled by a switch and only one antenna can be active at any time

instant (see Figure 8.3). Supporting simultaneous readings would require four RF

front-ends on the wireless node or, at least, the presence of additional circuitry to

measure the RF power on each patch. These solutions are not suitable for WSN

applications due to the cost limitations imposed on sensor nodes and, therefore, they

were not considered during the design phase of the antenna. Despite the limitations

of the hardware, the problem can be overcome by modifying the communication pro-

tocol between the base station and the target device. The modification consists in

activating the four faces in a rapid sequence and in transmitting a beacon message

from each of them. We suppose that the target node is able to acknowledge the

messages received in a time shorter than the switching time; if no reply is received,

we assume that communication on that face is not possible due to insufficient radio

power at that given angle. By adopting this scheme, if the switching time is short

(in the orders of tens of milliseconds) and the target position does not substantially

change during the four rounds of packet exchanges, the base station using the FBDA

can determine the power values necessary for position estimation. Figure 8.4 shows

two of the four message rounds required to measure the values Pr1, . . . , Pr4.
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Figure 8.4: Two of the four phase sequence used to collect RSSI mea-
surements on the faces of the FBDA.

8.3 Deriving Angle Information

Equations 8.16, 8.17, 8.18 define the ratio between Pr1 and Pr2, Pr3, Pr4 for any value

of the angle θ1. Since the power at the transceiver input is measured in dBm and the

antenna gains are expressed in dB, it is easier to rewrite the equations as:

[Pr1 − Pr2]dB = [Gr1(θ1)−Gr2(θ1 − π/2)]dB , (8.19)

[Pr1 − Pr3]dB = [Gr1(θ1)−Gr3(θ1 + π)]dB , (8.20)

[Pr1 − Pr4]dB = [Gr1(θ1)−Gr4(θ1 + π/2)]dB . (8.21)

Figure 8.5 is used to provide a visual interpretation of the equations introduced above.

Fixed the angle θ1, the RF signal from the target node is received with different power

levels because the signal impinges on the four patches with different relative angles

and, thus, is subjected to different antenna gains. Figure 8.6a reports the patch gains
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as a function of different angle position θ1 (from now on, we will drop the subscript

1 and we will just use the notation θ to denote angles relative to patch 1). Fixed

any other condition (e.g. Pt and Gt), the differences between Pr1 and Pr2, Pr3, Pr4

only depend on the difference between the gains Gr1(θ) and Gr2(θ), Gr3(θ), Gr4(θ).

In condition of ideal RF propagation the following condition holds:

‖DP −DG(θ)‖ = 0, (8.22)

where ‖·‖ denotes the Euclidean norm, DP is a column vector containing the power

differences between the patch n.1 and the other faces:

DP =




Pr1 − Pr2

Pr1 − Pr3

Pr1 − Pr4




, (8.23)

and DG contains the gain differences for any angle θ:

DG(θ) =




Gr1(θ)−Gr2(θ − π/2)

Gr1(θ)−Gr3(θ + π)

Gr1(θ)−Gr4(θ + π/2)




. (8.24)
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Figure 8.6: a) Antenna gains for the four faces of the FBDA. b) Differ-
ence between antenna gains at different values of angle θ.

A plot with the values of the three components of DG is reported in Figure 8.6b.

DG(θ) is a vector that only depends on the radiation patterns and the antenna geom-

etry, while DP is the obtained by measuring the powers with the scheme illustrated

in Section 8.2. Once the value DP has been determined, the angle θ can be found by

minimizing the difference between the two vectors:

θ̂ = arg min
θ
‖DP −DG(θ)‖ . (8.25)

In absence of measurement errors or other interferences, we expect that the difference

between the two vector will be zero when θ̂ is equal to the true target angle θ, even

if we cannot guarantee the uniqueness of the solution because there could be angles

θ1 6= θ2 such that DG(θ1) = DG(θ2). In addition, the presence of interferences and

measurement errors could be such that the equality ‖DP −DG(θ)‖ = 0 is not verified

by any angle. To address these uncertainties, we introduce a squared error measure

defined as follow:

E(θ) = (DP −DG(θ))′(DP −DG(θ)) (8.26)

=
3∑
1

[(Pr1 − Pri)− (Gr1(θ)−Gri(θ))]2,
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Figure 8.7: Error E(θ) evaluated for samples of DP measured at different
angles.

and we use the angle that minimize this error as an estimate of the target’s angular

position θ:

θ̂ = arg min
θ

E(θ). (8.27)

Figure 8.7 reports the error evaluated in correspondence of different angles using

power values Pr1, . . . , Pr4 measured in a real setting.
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8.4 Dealing With Missing Power Readings

Equation 8.27 ca be used if the four power values Pr1, . . . , Pr4 are available, but in

many practical situations, the communication between the target node and the base

station is likely to fail when using patches pointing in directions opposite to the target

node. Since one or more power levels might not be available, we redefine the error

function E(θ) to take into account those missing values. We note that Pr1, which has

been used as reference value, might be missing as well, therefore we use the patch

where the maximum power is received as reference value. The new error function is

defined as follows:

E(θ) = E1(θ) + E2(θ) + E3(θ) + E4(θ), (8.28)

where each of the terms Ei(θ) is given by:

Ei(θ) =





[(Pr max − Pri)− (Gr max(θ)−Gri(θ))]
2 if Pri is available

0 if Pri not available or i = max

(8.29)

8.4.1 Modified Error Function

A problem with the error function as defined in (8.28) and (8.29) is that, as the

number of power readings available decreases, the error E(θ) becomes less expressive

in defining the target position. In Figure 8.8a,c,e we report the error E(θ) for the

same vector DP used in Figure 8.7a (target at 0◦) when only three, two and one

power readings are available. In this last case, no angle information can be derived

(see Figure 8.8e). To deal with the problem of incomplete power readings, we modify

the error function E(θ) to take into account the transceiver sensitivity Pth (e.g. the

CC2420 has a Pth = −94dBm). The idea is that when a power value is missing, the

target should be in a position such that the angular gain of the antenna attenuates the
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signal below the transceiver’s sensitivity Pth. For example, if patch 1 is the antenna

that receives the maximum power (e.g. Pr1 = −84 dBm), and patch 4 is unable

to receive a message, we expect that the difference between Gr1 and Gr4 is at least

greater than 10dBm (i.e. the difference between Pr max and PTH). Therefore any

angle θ such that Gr1(θ)−Gr4(θ) ≥ 10dBm “explains” the missing value on patch 4,

while angles θ’s such that Gr1(θ) − Gr4(θ) < 10dBm need to be penalized in term

of error function E(θ) (e.g. if Gr1(θ) − Gr4(θ) was equal to 6dBm, on patch 4 we

would expect to receive a message with power of −84− 6 = −90dBm, which is 4dBm

above the radio sensitivity). To modify the error function to take into account the

transceiver’s sensitivity, we introduce the terms:

∆Pi = [(Pr max − Pri)− (Gr max(θ)−Gri(θ))], (8.30)

∆Ti = [(Pr max − PTH)− (Gr max(θ)−Gri(θ))], (8.31)

and we define the new error function as:

EM (θ) = EM1(θ) + EM2(θ) + EM3(θ) + EM4(θ), (8.32)

where:

EMi(θ) =





(∆Pi)
2 if Pri available

(∆Ti)
2 if Pri not avail., ∆Ti> 0, i 6= max

0 else

(8.33)

In Figure 8.7b,d,f we report the value of the modified error function, showing that

the error profile maintain its shape when some of the power readings are missing.
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Figure 8.8: Comparison between E(θ) and EM (θ) in case of incomplete
readings.
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8.5 Angle Estimation

We used data collected during in-field experiments to evaluate an angle estimation

algorithm derived using the equations introduced in previous sections. Two set of

measurements were made by placing the target node at about 3 meters from the base

station, with both nodes elevated of 1.2 meter above the ground. The RSSI values

on each patch were computed by averaging the values of 50 data packets collected

using the scheme described in Section 8.2. A burst of four beacon messages was

sent every 250ms with a delay time of 50ms between the activation of each patch.

Two set of values were measured using a transmission power of -25dBm and -15dBm,

with the FBDA antenna placed at about 3 meters from a wall (we assume that some

multi-path effects was present due to the reflections from the wall). The experiments

were repeated by rotating the FBDA around its vertical axis on 24 different angular

position spaced by 15◦ each. In evaluating the angle estimation performance, we

initially compared three schemes:

1. MAX_PATCH: the estimate is obtained using the direction of the patch that

receives the maximum power. In the case of the FBDA, such estimate can only

assume the values: 0◦, 90◦, 180◦, 270◦.

2. MIN_ERR: the estimate is obtained by the angle that minimize the error

function E(θ) defined in (8.28) .

3. MIN_ERR_M: the estimate is obtained by the angle that minimize the mod-

ified error function EM (θ) defined in (8.31).

Figure 8.8a,b reports the error of the three estimation schemes for the test done

using a transmission power of -15dBm and -25dBm. We note that the error of the al-

gorithm that use the direction on the patch with the stronger signal (MAX_PATCH)

oscillates between 0◦ and 45◦ and appears to be not affected by the transmission

power. The error of scheme based on MIN_ERR instead, increases noticeably when

the transmission power is reduced because of the errors due to missing power levels
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Figure 8.9: Angle estimation error using different schemes.

(cf. Section 8.4). This problem instead does not affect the algorithm based on the

modified error function EM (θ) which achieve comparable results in both cases.

Using the modified error function EM (θ) we have also implemented a different

version of the algorithm (MIN_ERR_M(n)) that operates by dividing the 360◦ hori-

zon in n sectors and averaging the error on each of them. The median angle of the

sector with minimum error is used as estimate for the angle. Figure 8.8c,d reports

the error when using 4, 6 and 10 sectors. Table 8.1 reports the mean and standard

deviation of the error using the different algorithms.
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-15 dBm -25 dBm
mean std mean std

MAX_PATCH 21.60 15.05 21.60 15.49
MIN_ERR 17.80 16.38 36.32 43.70
MIN_ERR_M 15.36 12.11 12.96 11.65
MIN_ERR_M(4) 21.60 15.05 21.60 15.05
MIN_ERR_M(6) 15.60 12.61 15.60 12.60
MIN_ERR_M(8) 18.00 16.20 15.00 13.00
MIN_ERR_M(10) 14.64 13.20 16.56 13.20
MIN_ERR_M(12) 14.40 14.02 27.60 14.01
MIN_ERR_M(16) 17.40 14.64 26.70 14.63

Table 8.1: Average Error (degrees) and Standard Deviation (degrees)
of different estimation algorithms using two sets of experimental data
(-15dBm and -25dBm).

8.6 Conclusion

The angle estimation results using experimental data show that MIN_ERR_M,

the scheme that operates by selecting the minimum of the modified error function,

θ̂ = arg min
θ

EM (θ), achieves the best performances in terms of average error and stan-

dard deviation. In the experiment using a TX power of -15dBm, the average error was

equal to 15.36◦ with a standard deviation of 12.11◦. In a similar experiment using a

TX power of -25dBm, the average error was equal to 12.96◦ with a standard deviation

of 11.65◦. Compared to the MAX_PATCH estimation scheme, the MIN_ERR_M

reduces the estimation error by a value comprised between the 28% and 40%. Al-

though more experimental tests would be needed to better characterize the proposed

scheme, these first preliminary results show that angle estimation used the FBDA is

possible with a satisfactory accuracy.
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Chapter 9

Conclusions

Localization in sensor networks is a task that consists in computing the node posi-

tions on the basis of a limited amount of initial information. In this thesis a novel

method based on the Self-Organizing Map formalism has been proposed to solve the

problem using radio connectivity data and no a-priori information on anchor nodes.

The algorithm, although centralized, is characterized by a lightweight implementa-

tion that makes it suitable for execution on inexpensive sensor nodes with limited

computational resources.

The directive antenna that we evaluate in the last chapters of this thesis is also

designed to work with resource-constrained nodes. Using experimental measures and

theoretical models, we have demonstrated that the antenna is effective in improving

communication among sensor nodes. In addition, the directivity of this inexpensive

antenna has been used to implement an algorithm capable of estimating the angular

position of a nearby node, deriving information useful in solving the localization

problem.
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9.1 Summary of Contributions

• A novel, range-free, anchor-free algorithm has been proposed to solve the lo-

calization problem using only connectivity information, and without relying on

the presence of anchor nodes.

• Using extensive simulations we showed that the solution produces virtual maps

that are useful when used for tasks such as geographical routing, with results

that are very close to those found when the true network coordinates are known.

• A modified version of the basic algorithm was proposed to efficiently use anchor

information (if available). The solution generates accurate absolute maps: using

only four anchor nodes, the localization error drops below 0.3 R (i.e. 30% of the

communication range) for networks with average connectivity of only four nodes.

Simulation results show that the proposed scheme outperforms the popular MDS

technique, with an error reduction up to 43% in networks with low connectivity

and up to 75% in networks with anisotropic layout.

• We analytically demonstrate that the proposed scheme has low computation and

communication overheads; hence, making it suitable for resource-constrained

networks. Benchmark tests on COTS sensor nodes demonstrated that a network

with 100 nodes could be localized in less than 3 minutes.

• We experimentally evaluated the use of a directive antenna designed to meet

the cost and size constraints of sensor nodes. The experiments were performed

to characterize the antenna in conditions of large-scale and small-scale fading.

Results were explained using theoretical fading models showing good agreement

between measured and calculated data. The model parameters derived in this

study will be useful in future system simulations.

• An algorithm to estimate the angular position of a target node has been pro-

posed. The algorithm evaluates the signal power received on the four faces to

estimate the angular position of a nearby node. Results on a first set of ex-
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perimental tests show that angle estimation is possible with an average error of

about 15◦.

9.2 Future Work

Future extensions to this work will cover the following points:

• To collect additional experimental data in order to provide a more accurate

evaluation of the angle estimation algorithm proposed in Section 8.5.

• To extend the SOM algorithm to include angle information derived using the

directional antenna characterized in the last two chapters of this thesis. The

trade-off between the number of directional antennas and localization accuracy

should be evaluated to provide guidelines for future in-field applications.

• To propose a distributed version of the same algorithm, where each node par-

ticipate in the computation solving part of the problem. The number of radio

messages exchanged among nodes should be minimized to preserve the energy

budget within the network.
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