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ABSTRACT

Recent years have witnessed the emergence of novel application paradigms such as the Wireless Sen-

sor Network and Context Aware computing. Among the challenges posed by these applications, localization

– i.e. the process of locating people and/or devices – has emerged as a key problem that has found only

partial answers. Although GPS receivers are common on many consumer electronic devices, alternative so-

lutions are needed when locating devices that strive to be small and inexpensive, as in sensor networks, or

when supporting indoor positioning. This dissertation focuses on radio-based positioning schemes suitable

for applications where GPS is not a viable solution.

The first part of this work addresses schemes that use proximity constraints inferred from radio con-

nectivity. A novel solution based on the Self-Organizing Map (SOM) formalism is proposed. Using extensive

simulations, the SOM approach is shown to achieve a low localization error using limited computational re-

sources. Comparison with other schemes demonstrate favorable results, especially in sparse deployments and

when few (or none) of the nodes are located at known positions.

The second part focuses on theoretical analysis of the results. Two broad families of positioning

schemes are analyzed: 1) Range-free schemes that use radio proximity information, as in the SOM approach;

and 2) Range-based schemes that measure the attenuation of the Radio-Frequency (RF) signal to estimate

inter-node distances. First, analysis of the Fisher Information and the Cramér–Rao bound are used to inves-

tigate the theoretical limits that bound the localization error in the two cases. Then, general design criteria

are proposed to reduce the error of range-free schemes and determine in which operative conditions they can

outperform range-based solutions.

In the final part of this work, the theoretical results are used to design an improved variant of the

SOM algorithm that combines the best traits of proximity and RSS ranging localization. Validation using

measurements from real deployments shows significant improvements over the original SOM version and

other localization schemes. Practical implementation of RF-based positioning systems is further investigated

by using directional antennas for Angle of Arrival (AOA) estimation. A novel angle-based system that uses a

single anchor is described and validated using experimental results. Additionally, a SOM variant capable of

exploiting AOA information in collaborative localization is investigated using simulations.
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Chapter 1

Introduction

Localization, geo-location, andlocation sensingare equivalent terms that refer to the process of computing

the physical position of a device [104]. At the present, the most popular localization system is the widespread

Global Positioning System(GPS), which is used in a variety of military, industrial and recreational applica-

tions. GPS devices determine their position by receiving signals from a constellation of 24 satellites arranged

in six orbital planes [77]. When the receiver locks on four or more signals, it first usesTime Of Arrival (TOA)

techniques to estimate the distance of the transmitting satellites. Then, it applies amulti-laterationalgorithm

to compute its 3D position on the earth’s surface and report the result to the user.

Although GPS receivers are popular in many consumer electronic devices, some application domains

require different localization approaches. Two relevant cases where the GPS technology is not effective are:

1) Wireless Sensor Networks(WSNs), and 2) Location-Aware applications operating indoors.

1.1 Wireless Sensor Networks and Indoor Applications

The WSN is a flexible and scalable paradigm that is drawing increasing attention due to its potential utilization

in many civilian and military domains. Designed to work without infrastructures, WSNs exploit inexpensive

sensor nodes and multi-hop radio communication to implement large-scale monitoring solutions.

Typical WSN applications include environmental monitoring, asset tracking, surveillance and disas-

ter relief [7]. In all these cases, knowledge of the node positions is required to correctly evaluate the results.

For example, in precision agriculture, temperature and moisture values are correlated with position to identify

micro-climate zones [157]. Knowing the sensor positions is also critical for locating an intruder vehicle in
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a military field [10], as well as guiding a team of firefighters to the location of an emergency [33]. Finally,

network services such as geographical routing [78], location-based queries [70] and resource directories [98]

rely on knowledge of the node coordinates.

The sensor positions are unknown as a result of ad-hoc deployment or because the sensors are mo-

bile. Applications with nodes scattered from airplanes or ground vehicles are examples of ad-hoc deploy-

ment; mobile networks are found when nodes are carried by people [165], or attached to vehicles [97] and

animals [105]. While some of these WSNs can exploit GPS-enabled sensors, low-cost deployments and

applications that can tolerate approximate positioning are better served by solutions that limit, or avoid alto-

gether, the need of GPS receivers. Finding a substitute to GPS is especially important in applications where

the nodes strive to be small, inexpensive and low-power.

Other applications requiring implementations alternative to GPS are those deployed indoors, where

the signal reception from the satellites is unreliable. Indoor position awareness is required by numerous

applications ranging from in-building navigation to asset and personnel management in large warehouses and

hospitals [104]. Indoor positioning is also fundamental to enhance the experience of users interacting with

ubiquitous computing systems [67]. Smart spaces are expected to sense the user’s position to deliver relevant

content, facilitate access to nearby resources, and enforce security policies [43, 65].

1.2 Collaborative Localization

As previously mentioned for the GPS, the absolute position of a wireless device can be determined by collect-

ing measurements from satellites at known position. The same approach can be used to support localization

in smaller scale wireless systems: If a node can estimate the distance from three or moreanchordevices at

known locations, its position can be computed using a multi-lateration scheme similar to that used by GPS re-

ceivers. This approach is conceptually well defined, but it might fail in applications where nodes have limited

communication and sensing capabilities. For example, in low-power sensing applications and other ad-hoc

deployments, it might be not possible to guarantee a sufficient anchor coverage to support multi-lateration for

every device in the network. In such scenarios, nodes can compensate for the lack of reference devices by tak-

ing measurements with other peer nodes at unknown position. If all the nodes participate in this collaborative

effort, the collected data can be used to localize the whole network (see Figure1.1)

Existing collaborative solutions can be grouped inrange-basedandrange-freeschemes depending

on the type of measurements used.Range-basedschemes implement localization using angle or distance
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The Collaborative Localization Prob lem:

Inputs:

• Pairwise measurements between neighbor nodes:

Distance

Angles

Proximity

. . .

Range-Based Loc.

Range-Free Loc.

• The position of some anchor nodes - optional:
(Anchor-based vs Anchor-free Loc.)

Output:

• Node positions.

Anchor Anchor

Anchor Anchor

Anchor

S e ns i ng / M e a s .  R a ng e

Figure 1.1: Collaborative localization in ad-hoc wireless networks. The node positions are computed using
information collected by neighboring devices.

estimates between pairs of nodes. This information is typically obtained by augmenting each node with

dedicated hardware such as ultrasound transceivers for distance measurements, or directional antennas for

angle of arrival estimation. On the other hand,range-freeschemes only rely on proximity information, i.e.

knowing if two nodes are close in space or not. Although this solution can only provide coarse-grained

results, proximity constraints are readily available by sensing common physical phenomena such as sound

and light, or by exchanging radio messages.

Another classification among collaborative schemes is whether they necessarily assume the presence

of anchor nodes or not. While most of the positioning schemes areanchor-basedsolutions that only work if

the network contains devices at known position,anchor-free schemes will work even when no anchors are

present. In the latter case, since no absolute reference points are used, the algorithms generaterelative maps

that are useful to implement services such as navigation, geographical routing [78], and service discovery.

A-posteriori conversion into absolute maps is always possible when anchor information becomes available.

Some of the network positioning schemes proposed in the literature are reviewed in Chapter2. The

chapter also provides a formal definition of collaborative localization and discusses some of the reasons

that make it a difficult problem: 1) From a theoretical perspective, network localization is analogous to the

problem ofembeddinga graph in a Euclidean space. Except for selected cases1, this problem is NP-hard even

assuming error-free range measurements or ideal connectivity [152, 26]. 2) In addition to the computational

complexity of finding a solution, the result may be ambiguous, i.e. multiple solutions are admissible, when

not enough constraints are available [46]. This situation likely arises in WSNs because nodes have limited

1The localization problem can be efficiently solved in networks where a high number of error-free inter-node distances and angles
are known. See the work using semidefinite programming by Biswas and Ye [22] or the definition oftrilateration graphs [12].
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communication/sensing range and can only interact with a few neighbors. 3) In practice, since nodes use

inexpensive sensors and are deployed in uncontrolled environments, the measurements are not only difficult

to obtain, but also corrupted by substantial noise that increases the uncertainty in the results [129, 172].

The intrinsic difficulty of the problem explains the large number of localization schemes proposed

over the past few years. The literature review in Chapter2, although far from being exhaustive, serves to

define the context for the work presented in the following chapters.

1.3 Outline and Contributions

This dissertation focuses on collaborativeRF-based localization systems, i.e. systems where the information

to localize the network nodes is collected by exchanging radio messages. This approach is inexpensive and

available to any node with a built-in wireless interface. In addition, radio message can support both range-

based and range-free schemes. In the range-based approach, theReceived Signal Strength(RSS) measured

by the transceiver is used to estimate the distance of the transmitting node. In the range-free approach, the

RSS values are usually discarded, but the successful reception of radio messages indicates that two nodes are

close in space. This condition is also expressed by saying that the nodes areneighborsor connected. The

proposed work investigates collaborative localization following three research directions:

• The design and validation of novel range-free schemes.

• Theoretical analysis of the limits that bound the localization error for RF-based systems.

• Implementation of practical localization systems.

The following sections describe the contributions in each area and provide an outline of the dissertation.

1.3.1 Range-Free Localization

Chapter3 describes a novel range-free scheme based on a neural network formalism known as theSelf-

Organizing Map(SOM). The proposed scheme computes the node positions using proximity constraints

between sensors and exploits the topological ordering properties of the SOM paradigm (see Section3). Al-

though other SOM-based localization schemes have been presented, to the best of the author’s knowledge,

this is the first approach to use SOM for localization based on radio connectivity (see Section3.2).

Results of extensive simulation show that the SOM-based approach is accurate, computationally

feasible, and suitable for a variety of application scenarios. SOM-based localization works with or without

anchor nodes. The anchor-free version (SOM-V) generates virtual coordinates that are effective when used for
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geographic routing (see Section3.4). Using the SOM-V’s maps, geo-routing achieves performance close to

the case where the true node positions are available. A second version of the algorithm (SOM-A) can generate

absolute coordinates by including anchor information in the training phase of the map (see Section3.5). Using

only four anchor nodes, SOM-A achieves a localization error as low as0.3R, i.e. 30% of the communication

range, for medium-sized networks with an average connectivity of just five neighbors per node. This result

represents a 30% to 60% improvement over the performance of popular range free schemes such as DV-

HOP [127] and MDS [154]. Finally, based on analytical analysis, the proposed scheme is shown to have a

low computation and communication overheads, hence making it suitable for resource-constrained networks

(see Section3.6).

1.3.2 The Limits Of Radio-Based Localization

After having presented the SOM-A and SOM-V schemes, this dissertation specifically focuses on the mea-

surements used to implement localization. Despite the attention received by RF-based approaches, two fun-

damental questions have not been sufficiently investigated in the literature. The two questions are:

1. What is an optimal approach to infer connectivity information from radio messages?

2. How do the performance of the range-free solution compare against those of range-based approaches?

The first topic addressed is range-free localization. The question raised is how to obtain connectivity

information from radio measurements. Since previous research work has often assumed circular connectivity

based on anidealizedradio propagation, only few authors have offered implementation details on how to

obtain connectivity information. For example, in the popularcentroidscheme [30], nodes are connected if at

least90% of the messages are correctly received. Unfortunately, simple heuristics like this one can lead to

large errors, especially when most of the nodes are within their radio range.

Section4.1adopts a more general connectivity model based on quantization of the RSS values. The

problem of finding the optimal quantization level is then investigated on the basis of previous research work

that has cast localization as a parameter estimation problem. Using this framework, analysis of the Fisher

Information and the Cramér–Rao bound (CRB) serves to identify the optimal threshold that minimizes the

theoretical error of range-free localization. The analysis is further extended to avoid computation of the CRB,

which requires knowledge of the true node positions. The main contribution of Section4.2 is the derivation

of an approximate formula to compute the optimal threshold and obtain connectivity information from radio

measurements. Notably, this approach can be applied to any range-free scheme and avoids the large error

typically found when localizing densely deployed networks.
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The second question raised is:How do range-free schemes compare against solutions that use the

RSS data (no quantization) to produce distance estimates?It is known that range-free schemes are capable of

fine-grainedpositioning, while the range-free approach can only producecoarse-grainedresults. But range

estimates obtained from RSS values can be inaccurate due to the unpredictability of the wireless channel,

and some authors have occasionally noticed that connectivity-based approaches can outperform range-based

schemes in noisy environments [129, 20]. Given these premises, it is not clear when a system designer should

opt for a range-based or a range-free scheme.

Using an approach similar to the one used for the optimal threshold problem, Section4.3compares

range-based and range-free localization. Analysis of the CRB shows what parameters affect their perfor-

mance, and under which conditions one approach can potentially outperform the other. Again, the results are

analyzed to find design criteria of practical applicability. Section4.4shows that an informed choice between

the two approaches is possible by comparing the current network connectivity against the value of a function

that only depends on the network size and the parameters of the propagation model. While this result and

the optimal threshold approach of Section4.2 are the major contributions of Chapter4, in general, the pro-

posed analysis serves to understand the factors that affect the localization error in the two cases and suggests

strategies to improve RF-based localization.

1.3.3 Implementation of RF-Based Positioning Systems

The last part of this dissertation focuses on practical implementation of localization systems and evaluation

of their results in realistic application scenarios.

Chapter5 investigates a localization scheme that is resilient against different operative conditions.

Based on the theoretical analysis of Chapter4, the SOM algorithm is presented in a new variant (SOM-R)

capable of using RSS measurements together with connectivity data (see Section5.2). The SOM-R scheme

retains the quality of range-free localization for low-connected networks, while ensuring accurate localization

in dense deployments. Results using RSS traces from three different node deployments show a SOM-R’s error

independent of the network connectivity and significantly lower than the error of MDS, DV-HOP and the

other SOM variants. Similar results are achieved in networks with anisotropic layouts, which are notoriously

harder to localize.

Practical implementation of RF-based positioning systems is further investigated by using directional

antennas forAngle of Arrival(AOA) estimation. Chapter6 discusses twoswitched-beamantennas developed

in collaboration with the Microelectronics Lab, Università Degli Studi di Firenze, Italy. Field tests are used
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to evaluate the results of different AOA estimation techniques. In addition, Section6.2 describes a novel

localization system that uses one of the proposed antennas to localize a wireless target using measurements

from a single anchor node. Three different localization algorithms are described and evaluated using RSS

traces collected during a measurement campaign in a large classroom at the University of Florence. The

experiments show that 2D target localization is feasible using a low-cost RF system with a single anchor

node. Finally, application of single-anchor localization is extended to collaborative schemes by including

AOA information in the training phase of the SOM algorithm. Preliminary simulations confirm the proposed

scheme as a viable solution to enable accurate collaborative localization using a single anchor node.



Chapter 2

Background

Localization is an active research area devoted to supportlocation awarenessin applications where the use

of GPS is not cost effective (e.g. sensor networks) or technically feasible (e.g. indoor applications). This

chapter presents some of the theoretical background necessary to understand the complexity of the positioning

problem. In general, network localization is known to be a computationally intractable problem; additionally,

its results are prone to ambiguities. Given these challenges, a large number of localization schemes has

been proposed to obtain approximate node positions. Some popular approaches are described in Section2.3.

Additional bibliography is discussed within other parts of this dissertation, and "related work" sections appear

at the end of Chapters3 and4.

2.1 System Model and Problem Definition

Considern devices deployed over a two-dimensional space. It can be assumed that each node is identified

by a unique ID. Devices communicating using standard protocols, e.g. IEEE 802.x.y, typically have a 48-bit

or 64-bit unique MAC address that can be used to identify the node. For simplicity, the unique identifiers are

mapped to the firstn integers{1, . . . , n}.

The physical location of each device is described by a coordinate vectorvi = [xi, yi]
t,

i = {1, . . . , n}. Applications with nodes deployed in 1D or 3D spaces will consider coordinate vectors

vi = [xi] andvi = [xi, yi, zi]t, respectively. The goal of a localization service is to compute the unknown

vectorsvi’s using some initial information collected by the devices in the network.
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System
n nodes: {1, . . . , n}, n > 0

m anchors: {n+ 1, . . . , n+m},m ≥ 0

Anchor positions: {[xa, ya]t}, n+ 1 ≤ a ≤ n+m

MeasurementsM = {mij}, 1 ≤ i, j ≤ n+m, i 6= j

Localization Service

Node PositionsInputs

n,m, {[xa, ya]t},M [xi, yi]
t, i = {1, . . . , n}

Figure 2.1: A centralized localization system. The unknown node positions are computed using information
about the number of nodesn in the system, the position{[xa, ya]t} of the anchors (if available), and the set
of measurementsM collected between neighboring nodes.

The information available to localize the nodes consists of:

• A set of anchor nodes (optional).

• A set of measurementsM.

In applications with anchors, some of the node coordinates are known beforehand. If the network contains

m ≥ 0 anchors labeledn + 1 throughn + m, then the vectors[xa, ya]t, a = {n + 1, . . . , n + m}, are

assumed to be known at runtime. This dissertation does not investigate the effect of anchor placement on the

localization error. Previous research work has shown that the best results are achieved when the sensors are

located inside of theconvex hullof the anchors [149]. In practice, the anchors should be deployed on the

perimeter of the network, preferably on the corners of the deployment. More details on anchor placement

and its effect of the localization error can be found in the literature [31, 155, 100].

The setM contains the measurements available between pairs of nodes in the network:

M = {mij : a measurement between nodei andj is available, 1 ≤ i, j ≤ n+m, i 6= j}.

Each measurementmij contains information about the relative position of nodesi andj. For example,mij

can be a binary value that describes the proximity between two nodes, a value that measures their distance,

or an estimate of the angular position between two nodes. While it would be desirable to obtain measure-

ments between each pair of nodes in the network, the measurement hardware has a limited sensing range

that often restricts the number of data collected. In typical applications, nodes might only be able to col-

lect measurements with a few neighboring nodes located in their proximity. This restriction motivates the

use of collaborative localization schemes designed to compute the position of every device in the network,



10

even those nodes outside the measurement range of the anchors. In contrast, non-collaborative localization

schemes requires that each node collect measurements with three or more anchors.

2.1.1 Assumptions

The work in this dissertation is based on the following assumptions:

• Symmetric Measurements.It will be assumed that all the measurements are symmetric. For example,

if mij represents the distance between two nodesi and j, the assumption requires thatmij = mji.

Asymmetric values will originate if nodesi and j separately estimate the distance to the other node

using local measurements. Differences in the measurement hardware and localized interference might

results in valuesmij 6= mji. By requiring symmetric measurements, the two values will have to be

consolidated into a single estimate (e.g. by taking the average of the two values).

• Centralized Computation. Another assumption is that the available information can be collected and

processed at a central unit. The computational unit can be one of the devices in the network, or a

processing device external to the system. The information transmitted to this unit include the number

n of devices in the network, the set of measurementM, and, when available, the number of anchorm

and their coordinates[xa, ya]. It will be assumed that all the devices in the system are working correctly

and are capable of reporting their measurements to the central unit. This scenario will be useful to

characterize the intrinsic complexity of the problem with knowledge of all the available information.

Distributed localization schemes, which have received increasing attention during the past years, will be

discussed in Section3.6when analyzing the computational complexity of localization using SOM.

• Static Networks. The devices are assumed to be static. If nodes move, the measurements inM are

supposed to be collected within a time period during which the node positions do not significantly

change. Therefore, a scheme that operates under this condition will approximate the node positions at

the measurement time. In mobile networks, the static positions computed at consecutive time steps can

be used to implementtarget trackingapplications that estimate the trajectory of each node [27, 10]. In

such applications, the results can be improved by applying statistical filtering to the data, e.g. [145],

or by using the Kalman filter to combine the estimates with a dynamic model that describes the node

movement [113]. While the target tracking represent an important problem with numerous practical

applications, the work in this dissertation specifically focuses on producing position estimates for static

node configurations.
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Under the assumptions stated, collaborative localization can be described using two different ap-

proaches that use results from graph theory and parameter estimation. The graph theoretical formulation,

which is described in the next section, is useful to characterize the computational complexity of the prob-

lem. The parameter estimation approach is described in detail in Chapter4 to analyze the effect of noisy

measurements on the position estimates.

2.2 The complexity of the Node Positioning Problem

A wireless network can be modeled as a graphG = (V,E), where the set of vertexesV = {1, . . . , n +m}

contains an element for each node in the system, and the setE contains an edge{i, j} if a measurement

between nodesi andj is available (i.e.mij ∈M). Based on the assumption of symmetric measurements,G

is a undirected graph.

Given a graphGmodelling a wireless network, localization is analogue to the problem ofembedding

a graph in an Euclidean space, a subject that has been extensively studied in the area of computational

geometry and graph rigidity. Finding agraph embeddingconsists in determining a mapping function

ρ : V → Rd

that uses constraints derived from the edge to assigns each vertex to a position inRd, whered is the dimen-

sionality of the embedding space. Depending on type of measurements available, different formulations of

the problem can be considered.

2.2.1 Embedding With Known Edge Lengths

When some of the inter-node distances are known, the measurementsmij are estimates of the distance be-

tween two nodes. The graph embedding problem seeks a mappingρ compatible with the available data:

‖ρ(i)− ρ(j)‖ = mij , ∀ {i, j} ∈ E, (2.1)

where‖ ∙‖ denotes the Euclidean norm. A coordinate assignment produced by the mapping function is called

realization. The next two sections discuss two relevant problems related to graph embedding.
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Figure 2.2: Localization ambiguities in absence of reference points.

Conditions For Unique Graph Realization

The first fundamental problem is to determine sufficient conditions for unique realization of the graphG.

First, it should be noted that in absence of absolute anchor nodes, every solution will be correct up to global

translations, rotations or reflections (see Figure2.2). The graph can be properly oriented by fixing the posi-

tions of three non-collinear nodes in the 2D space, or four such nodes in the 3D space.

Fixing the position of some anchor points, however, does not guarantee an unique solution. When

a graph is notrigid, the embedding can generate multiple realizations compatible with the available distance

constraints. Figure2.3 shows two graphs where some of the vertexes can be moved while maintaining the

22
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5

22

33
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4

222
a) b)

Figure 2.3: Flex Ambiguities: a) Node 5 can be moved continuously along a circular path; b) Node 2 admits
two positions compatible with the measured distances from nodes 1 and 5.
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Figure 2.4: Discontinuous flex ambiguities. If edge 2-6 is removed, the graph can be deformed to obtain a
new realization where edge 2-6 can be reinserted without changing its length.

same distance from their neighbors. In the 2D space, a graph withn nodes has2n − 3 degrees of freedom:

two degrees of freedom for each node, minus one for a global rotation, and minus two for translations along

thex andy axis. Since each edge introduces a constraint, a rigid graph needs at least2n− 3 well-distributed

edges [92]. But the condition is still not sufficient for unique realization because rigid graphs are susceptible

of discontinuous motions. Figure2.4shows an example of a rigid graph that can generate multiple realizations

without violating the constraints on the edge lengths. If the edge between nodes 2 and 6 is temporarily

removed, the quadrilateral defined by nodes 1-3-4-6 can be deformed to generate a new configuration where

the edge 2-6 can be reinserted without changing its length. This condition is known asdiscontinuous flex

ambiguity.

Unique realization inRd requires a graph to be(d + 1) connected andredundantly rigid, meaning

that the graph is still rigid upon removal of an edge [66]. This condition is necessary and sufficient [71] for

unique realization in 2D and can be tested in polynomial time [72]. No similar results exist for graphs in

higher dimensions.

The characterization of uniquely localizable graphs is important when localizing ad-hoc networks

because nodes have limited sensing range and measurements are only possible with a few nearby nodes.

Intuitively, if a network correspond to a graphGwith multiple admissible realizations, the localization results

produced by any localization scheme are always potentially incorrect. The properties ofrigid graphshave

been used to determine conditions for unique localization of ad-hoc networks [46, 60], or to improve the

performance of basic trilateration algorithms under noisy measurements [115].

Most of the graph theoretical results consider scenarios in which no anchor nodes are present. When

some of the node positions are known, the distance between these nodes is implicitly known; therefore

the graph representing the network should be augmented with an edge for each distinct pair of anchors. In
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application with anchor nodes, the condition for unique realizability, i.ed+1 connectivity and global rigidity,

should be checked against this extended graphs [12].

Computational Complexity

In addition to possible ambiguities due to an insufficient number of measurements, the graph embedding

problem is computationally complex. Saxe has shown that embedding a graph in a Euclidean space is NP-

hard [152]. More recently, a number of authors have built on this result to characterize the complexity of the

problem specifically for sensor networks, which might contains anchor nodes and where the measurements

are likely to be affected by noise. Theoretical results are available for network localization using noisy dis-

tance estimates [13, 19]. In all the cases presented the problem is still NP-hard, unless the distance estimates

are noise-free and are available for a large-number of nodes [22, 12]. Embedding a graph using local angle

information is also NP-hard [28].

2.2.2 Embedding Using Connectivity Information

The results in the previous section apply to problem of embedding a graph with known edge lengths. Such

results are relevant to range-based localization scenarios, where nodes posses hardware such as ultrasound or

UWB transceivers to measure their distance from the neighbors. When a propagation model is available, the

distance can also be estimated using RSS measurements.

A different approach is used by range-free schemes that only rely onconnectivityinformation. Sev-

eral graph theoretical results are also specifically available for proximity-based localization, which is the

application considered in Chapter3 of this work. An overview of the most relevant theoretical results has

been presented by O’Dell et al. [131]. In particular, a network with connectivity constraints can be modeled

as aUnit Disk Graph(UDG), where two nodes are neighborsiff their Euclidean distance is less than one. By

a proper coordinates scaling, this model can represent an idealized wireless network, where two nodes are

neighborsiff their distance is less than the communication rangeR (see Figure2.5).

Unique Realization of Unit Disk Graphs

Similar to the previous case, the localization problem can be posed as one of embedding an UDG in an

Euclidean space. However, the same UDG can be generated by an infinite number of network layouts in

which the node positions are perturbed slightly without changing the connectivity between nodes. Therefore,

even in presence of UDG admitting an unique realization, the range-free solutions are intrinsically ambiguous.
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Figure 2.5: A Unit Disk Graph (UDG) used to model a network with connectivity constraints.

Computational Complexity

Embedding an UDG is NP-Complete in one dimension and NP-hard in two dimensions [26]. Recently,

the problem has been proved to be APX-hard [108], meaning that the solution cannot even be efficiently

approximated. In fact, there exist node configurations for which even an optimal algorithm cannot produce

an embedding with quality1 better than
√
3/2 [89]. The only known algorithm with bounded error has

been proposed by Moscibroda et al. [116], who addressed the problem of localization using connectivity

constraints (ideal disk connectivity).

2.3 Localization Schemes in Wireless Sensor Networks

The computational complexity of the graph embedding problem and the occurrence of ambiguous realiza-

tions help in understanding the challenges faced in designing collaborative localization schemes. Since the

node positions can only be approximated, many solutions have been proposed in the literature. Different

alternatives are the results of different trade-offs between system complexity and accuracy. For example, re-

liable estimation of distances and angles requires augmenting each node with dedicated hardware. Therefore,

range-based schemes are better suited to high-end applications requiring accurate positioning. On the other

hand, range-free approaches trade accuracy for simplicity by relying on proximity information that can be

collected using the radio transceiver, or inexpensive RFID tags [68].

The next sections review some popular localization schemes. General survey papers on localization

and positioning techniques have been proposed by several authors (e.g. [67, 93, 119, 104]), and several books

on WSNs contain chapters on localization (e.g. [179, 141, 20, 160]).

1Thequalityof an UDG embedding is expressed as the ratio between the maximum distance of neighboring nodes and the minimum
distance of disconnected nodes. Ideally, the quality of the realization should be less than one.
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2.3.1 Range-Based Algorithms

An object in the 2D space can be localized when the following information is known: i) the distance from

three non-collinear anchor nodes (trilateration), or ii) the angle from two anchor points (triangulation), or

iii) the distance and the angle from a reference point (see Figure2.6). In the general case, not every node

will be able to make measurements with the minimum number of anchors; therefore distance and angle

information are often used to implement collaborative localization schemes (see Section1.2). When a suf-

ficient number of estimates has been collected, the node positions can be computed using multi-lateration

algorithms [150], semidefinite programming [21], maximum likelihood estimators [136], or spring-mass re-

laxation approaches [139]. The next section discusses some popular approaches to obtain range and angle

information.

Ranging Using RF Time of Flight (ToF)

RF Time of Flight ranging techniques estimate the distance between two nodes by measuring the time neces-

sary for a radio packet to travel from the source to the destination. Implementation of ToF solutions requires

nodes equipped with fast clocks capable of nanosecond accuracy (RF signals travel at30 cm per nanosecond).

In addition, the sender and the receiver must be accurately synchronized.

If synchronization is not feasible with high accuracy, range estimates can be obtained by measuring

the round-trip time of flight. This solution also requires a precise evaluation of the time used by the target

node to process the message and send a reply back to the source. Given these requirements, ToF ranging

techniques are better suited to high-end positioning systems requiring high accuracy. Application to WSNs

with nodes clocked at only few MHz is not possible.
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Ranging Using Time Difference of Arrival (TDoA)

Ranging using acoustic ultrasound is attractive to a wider range of applications mainly because of two rea-

sons: i) ultrasound transceivers are available as COTS components easy to interface with sensor nodes, and,

ii) accurate localization can be achieved using low-rate clocks. Given the speed of sound, a32 KHz clock is

sufficient for1 cm localization accuracy.

Because ultrasound ranging is relatively easy to implement on sensor nodes, several solutions [170,

140, 171, 150, 115] have been proposed where the source node transmits an ultrasound pulse and an RF

packet at the same time. The radio message, which travels at higher speed than the acoustic pulse, is used

to trigger the receiver node which in turn measures theTime Difference of Arrival(TDoA) between the two

signals. The distance between the two nodes is computed by taking into account the TDoA and the difference

of speed between sound and the RF signal. The main disadvantages of ultrasound ranging techniques is that

sound propagation is affected by weather conditions, and the effective range is reduced to only a few meters

when the transmitter and the receiver are not aligned (in facts, many transmitters emit a conical directional

beam). This limitation, together with the cost of the additional hardware, suggests application to small-scale

sensor deployments.

Ranging Using Received Signal Strength (RSS)

The RSS ranging approach is less accurate than ToF and TDoA, but it can be implemented on sensor nodes

without specialized hardware. In fact, most of the transceivers used in wireless networks support collection of

RSS measurements upon reception of a radio message. The RSS, which measures the signal power received

by a wireless device, can be used to estimate the separation distance of the transmitting node. For example, in

an ideal free space, the signal decays at a ratio of1/d2; therefore the separation distance between two nodes

can be estimated once the transmission power and the RSS are known. In real case applications, the path loss

depends on the characteristic of the environment where the communication takes place. For example, the

attenuation can be as low as1/d1.5 along straight corridors that act as a wave-guide, or it can be proportional

to 1/d4 for near the ground transmission, where the component reflected by the ground destructively inter-

feres with the LOS (line of sight) component. Additionally, multi-path fading due to reflection, diffraction

and scattering of the RF signal causes variations in the received power and ultimately reduces the accuracy of

the RSS ranging approach. Despite the unpredictability of the radio signal propagation, ranging using RSS

is appealing because it can be implemented in low-cost applications. This approach is discussed in detail in

Chapter4.
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Angle of Arrival (AoA)

Angle of Arrival (AoA) estimation using beamforming or phased antenna arrays has not enjoyed much pop-

ularity in sensor network applications due to the cost and complexity of these technologies. However, re-

cent work on directional antennas has demonstrated that simple switched patch units can meet the size and

cost constraints of sensor nodes. Several localization algorithm uses AoA information to localize sensor

nodes [126, 121, 175, 111]. Additionally, base stations equipped with directional antennas can support local-

ization of mobile users in indoor spaces. This topic is covered in detail in Chapter6. In particular, a switched

beam antenna developed in collaboration with the Microelectronics Lab at the University of Florence is used

to implement a single-node localization system to track user movements in an indoor space.

2.3.2 Range-Free Algorithms

Range-free algorithms [159] overcome the high cost and system complexity of range-based schemes by using

solutions that do not rely on dedicated hardware for distance or angle measurements. The location of each

node is estimated by exploiting proximity constraints inferred from radio connectivity or sensor readings.

In the first case, nodes that can successfully exchange radio messages are supposed to be within a distance

R, whereR is the communication range supported by the transceiver. In the second case, sensors can sense

natural or artificially generated phenomena that are used as basis for the localization process. The schemes

are further classified on whether they rely on the presence of anchor nodes placed at known position or not

(anchor-based vs anchor-free).
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Centroid

The Centroid [30] scheme is one of most simple, yet popular solutions proposed in the literature. It works

by assuming a set of anchor nodesA = {a1, . . . , an} placed at known locations(xi, xj)i,j={1,...,n}. The

anchors periodically broadcast their coordinates to the nodes at unknown positions. After a sufficient number

of messages has been received, each unit determines its location by computing the average value of the anchor

coordinates heard. The computed position is theCenter Of Gravity(COG) of a system of masses placed in

correspondence of the anchor nodes heard (see Figure2.7).

The robustness of the scheme is improved by maintaining statistics on the number of message re-

ceived from each anchor. Only anchor nodes with a number of successful transmission greater than 90% are

used in the computation. The localization accuracy of the centroid method is heavily affected by the number

of anchor nodes used. In a subsequent work, the authors propose a solution to adaptively place additional

anchor nodes to decrease the localization error [31].

DV-Hop Scheme

In the DV-Hop scheme [127], anchors flood the network with message beacons that are re-transmitted by

each node with the hop-count value increased by one unit. Using this approach, each node in the network

will eventually be able to compute the shortest path distance (in terms of hop count) from any anchor in the

network. To convert the path length into an absolute distance, the average hop count length is computed using

the following expression:

dhop =

∑

i

∑

j

√
(xi − xj)2 + (yi − yj)2

∑

i

∑

j

hij
.

The hop-count distance between any two anchors is used to divide the Euclidean distance separating them

(the anchors are at known locations). The result is an average hop count length that can be used to convert

an hop-count value into a distance value (see Figure2.8). Having determined the distance between three or

more anchors, each node computes its location using multilateration. The authors use a least square method

(the Householder method) to compute the actual position. The scheme works well when the path connecting

nodes and anchor nodes lie approximately on a straight line: in this case the hop-count distance is a good

approximation of the actual inter-node distance. When the network connectivity is low, or the deployment is

anisotropic, the performance degrades since the hop count distance is not a good approximation of the actual

distance (see Section5.3for more details).
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Figure 2.8: DV-Hop scheme: the shortest path (hop-count, hc) is used to estimate the distance from a node x
to the anchor nodes in the network. The actual position is computed using multi-lateration.

A similar approach is proposed in [120], but in this case the estimation of the average hop-count

length benefits from a priori knowledge of the nodes density through the use of the well known Kleinrock

and Slivester formula [80] to determine the hop size:

dhop = r

(

1 + exp(−nlocal)−
∫ +1

−1
exp(

−nlocal arccos(t− t
√
1− t2)

π
)dt

)

,

wherer is the average communication range andnlocal is the local node density.

A.P.I.T.

The APIT scheme proposed in [64] is based on an approximate test to determine if a node is within the

triangular area defined by three anchor nodes. If a node were able to move, it would detect increasing

(decreasing) RSS levels as it get closer (farther) to an anchor node. The PIT (point in triangle test) determines

if a point is inside a triangle by checking for the existence of a direction that would bring the node closer to

all of the three anchor nodes (see Figure2.9a). If such direction does not exist, the node is considered to

be inside the triangle. In static deployments nodes do not move; therefore an approximate version of the

test (Approximated PIT) is performed by simulating virtual movements in the direction of the neighboring

nodes (e.g. by comparing the RSS values seen by adjacent nodes). The final node position is computed by

intersecting the area of all the triangles a node belong to and then computing the COG of such area (see

Figure2.9b).

The authors of the the APIT scheme, which is not a truly range-free solution because based on RSS

comparisons, report extensive simulation results and comparison with the Centroid and DV-Hop schemes
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Figure 2.9: APIT scheme: a) Each node uses the APIT test to determine if it is inside the triangle area defined
by three anchors. b) The final position is the COG of the intersection of all triangles a node belong to.

presented before. Simulation results show that all the schemes previously mentioned perform well only

when a high number of anchor nodes is present and the network density is high. For uniform topologies

with connectivity equal to 8, each node needs to receive beacon messages from more than twelve anchors to

reduce the localization error under1.0R (see Figure2.10).

SeRLoc

SeRLoc [94] also implements an area-based, range-free approach similar to Centroids and APIT. The an-

chors are equipped with switched-beam directional antennas capable of covering the360◦ horizon with

non-overlapping sectors. The antennas transmitsectorizedbeacons to the network nodes along with an-

gular information about the beam used. Similarly to the other approaches considered so far, nodes compute

their position by determining the intersection of the beams seen from each anchor node (see Figure2.11).

Figure 2.10: Localization error of different range-free schemes reported by He et al. [64].
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SeRLoc also addresses the problem of security in sensor network localization. Other algorithms designed to

implement secure localization services are presented in [123, 101, 103, 95, 32].

Probability Grid

Proablity grid [161] is a localization scheme based on the assumption that nodes are placed on a regular

grid. It uses a similar idea to the DV Hop positioning algorithm since anchor nodes flood the network

with messages containing their position. Each node estimates the shortest path from each anchor node and

then computes the probability of being on each intersection point of the grid. The location with maximum

probability is chosen as an estimate for the node’s position.

MDS

Multi-Dimensional Scaling (MDS) [25] is a technique that has been extensively used in psychometrics and

many other applications to visualize multidimensional data sets. MDS implements a projection technique (to

a 2D or 3D space) capable of preserving the similarities present in the original data set. The use of MDS

to solve the localization problem in WSN was originally proposed in [154]. The node positions in the 2D

space are computed by first creating an × n matrix containing the squared distances between each node

in the network.. If the node distances are not available, the matrix is generated using the hop-count value

between each node. The final coordinates are obtained by first double-centering the distance matrix and then

using singular value decomposition and retaining the largest two eigenvectors (three for 3D localization). The

method has been successively extended to work in a distributed fashion [153, 74, 40, 167], motivated in part

by the scarce performance with anisotropic layouts like the ones described in section5.3.



23

A1

(x1,y1)

A1

(x1,y1)

b

tturn

α1

α2

Figure 2.12: Lighthouse: a parallel beam is generated by a rotating base station. Nodes determine the
distance from the base station by timing the light beam.

LightHouse

The LightHouse [144] approach exploits the sensing capabilities of nodes. A base station mounted on a

rotating support propagates a beam of light having widthb (the beam is generated using an array of laser

diodes) that is detected by the light sensors mounted on each of the nodes (see Figure2.12).

Each node computes the distanced from the base station by measuring the time (tbeam) during which

it sees the light beam:

d =
b

2 sin(α1/2)
=

b

2 sin(πtbeam/tturn)
,

whereb is the width of the beam, andtturn is the rotation period. Localization in the 2D space is achieved

by using three base stations mounted on orthogonal directions.

SpotLight

A similar approach to Lighthouse is used by the SpotLight system [158], which also relies on synchronized

light events to localize a set of nodes. Three different scenarios are analyzed (see Figure2.13): 1) Point scan:

if the nodes lies on a straight line (e.g. nodes deployed along a road), they can be localized by a base station

that emits a beam of light that is moved at constant speed along the line where the nodes lie. Since each

sensor will detect the light at a different time, the node distance from a reference point can be computed by

measuring the detection time and dividing it by the beam speed. 2) Line scan: some devices (e.g. lasers)

can generate lines of light that can be used to localize nodes on a 2D plane. A first line scanning in one

direction (e.g. vertical) allows the nodes to measure their distance from the vertical origin of the deployment

area (again, the distance is inferred by the time a node detects the light beam). 2D localization is achieved by

a second beam that scans the network in direction perpendicular to the first one (e.g. horizontal). 3) Finally,

the third method uses a video projector to illuminate the whole deployment area, which is partitioned in non-
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Figure 2.13: SpotLight: localization is implemented by timing the arrive of a light beam. Three options are
available: Point Scan, Line Scan, and Area Scan.

overlapping zones. Each zone is illuminated with an unique pattern light, where the presence of light denote

a “1” bit and dark is “0”. The temporal sequence of light/dark event is used to transmit a code representative

of each area in the network.

2.3.3 Scene Analysis Algorithms

The major problem in using the RSS signal to estimate a distance is that the signal propagation is affected

random phenomena such as multipath fading, shadowing, scattering and interferences from other source

operating in the same band. The problem is especially severe in indoor environments, where the presence

of obstacles (e.g. large metal cabinets, doors, windows, ceiling fans) increases the variability of the signal

strength. A localization approach that tries to overcome these difficulties is based on generating RF maps of

an environment and then using these maps to locate moving people or objects [14, 106]. The method requires

a setup phase during which a mobile device is used to record the signal strength from several base stations

present in the network. The result of this phase is the creation of aRF fingerprintsdatabase that is later

used to locate people or objects within the mapped environment. Scene analysis methods have the advantage

that can adapt to complex environments and provide acceptable performances when a sufficient number of

base stations is available. These methods are also computationally inexpensive, but, on the other hand, they

need a time consuming setup phase that needs to be repeated every time there are substantial changes in the

environment (e.g. new base stations are added, large piece of furniture are moved, etc.).



Chapter 3

Range-Free Localization Using

Self-Organizing Maps

Introduced in the early 80’s, theSelf-Organizing Map(SOM) [82, 83] is a neural network where each neuron

contains a weight vector that is updated during the training phase of the map. The neurons are arranged in

regular geometric structures, typically two-dimensional lattices with rectangular or hexagonal patterns like

the one in Figure3.1a.

As shown in the following sections, the structure of the map and the learning algorithm result in a

versatile architecture that has found numerous applications in the context of exploratory data analysis, pattern

recognition and vector quantization. An extensive bibliography of SOM papers has been initially compiled

by Kaski et al. [79] and successively updated by Oja et al. [132].

This chapter uses the SOM technique to implement a simple and elegant solution to the range-free

localization problem in ad-hoc wireless networks. The use of SOM for node localization is first described

in details; then it is evaluated using extensive simulations and comparison with some popular range-free

schemes.

3.1 The SOM Learning Algorithm

SOM implementsunsupervisedlearning, meaning that the map is able to learn the properties of the training

set without the aid of labeled samples or reward functions. Assuming that the information to learn is con-

tained in a large and potentially continuous input set with elementsxi ∈ Rd, the map produces a compact
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Figure 3.1: a) Self-Organizing Map with hexagonal pattern; b, c) two steps of the training algorithm.

representation of the training set using a finite number of reference vectorswj ∈ Rd. The weightswj, also

calledmodelsor referencevectors, are initialized with random values and updated by executing multiple

iterations of the following three-step sequence:

1. Sampling: A sample is extracted from the training set and presented to the network. Letx(n) denote

the sample at the current iteration.

2. Competition: The samplex(n) is compared with the map weights using a distance function. The

neuron whose weight is closer tox(n) wins the competition and become theBest Matching Unit(BMU)

(Figure3.1b). If the distance function is implemented using the Euclidean distance, the election rule is:

c = argmin
j
‖x(n)−wj(n)‖ , (3.1)

wherec denotes the index of theBMU, and‖∙‖ is the Euclidean norm.

3. Adaptation: The weight vectorwc associated with theBMU is updated to increase its similarity with the

input sample. During the adaptation process, theBMU activates nearby neurons (cooperative learning)

allowing them to learn some of the information contained inx(n). The update rule is:

wj(n+ 1) = wj(n) + η hcj [x(n)−wj(n)], (3.2)

whereη is the globallearning rateparameter andhcj is the value ofneighborhood functionthat controls

the adaptation for neurons close to theBMU (see Figure3.1c).
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Figure 3.2: a) Exponential scheduling for the parameterσ; b) neighborhood function at different number
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3.1.1 Learning Parameters

For ensuring convergence, the learning rateη should be computed using a functionη(n) that decreases

monotonically with the number of iterations. Optimal choices ofη(n) have been discussed in the litera-

ture [118, 84]; however, in practice, the exact form ofη(n) is not a critical factor in the SOM technique.

The update rule (3.2) is also controlled by the valuehcj that determines the amount of information

learned by neurons close to theBMU. The valuehcj can be constant for all the neurons within a given distance

from BMU when astepneighborhood function is used, or it can be computed using asmoothing kernel. As

shown in Figure3.1c, a common choice is to calculatehcj by using a Gaussian function:

hcj = exp

(

−
dmap(c, j)

2

2σ2

)

, (3.3)

wheredmap(∙, ∙) measures the distance on the map between two neurons, and the parameterσ controls the

width of the smoothing kernel. Similar to the learning rate, the parameterσ should be computed using

a functionσ(n) that decreases monotonically. Large values ofσ during the initial iterations result in a

wide neighborhood function that allows the map to quickly organize the neurons, while the smaller values

at the end of the training determine localized changes, allowing the map to describe different input features.

Figures3.2a,b show an example of exponential scheduling for the parameterσ and the resulting neighborhood

function at iterationn1 = 500 andn2 = 1500. Figure3.2c shows part of a hexagonal SOM with labels

indicating the distances between theBMU and nearby neurons. Whenever the neurons are updated, the map

distance and the current value ofσ are used to compute the valuehcj that controls the adaptation level of

each weight.
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Figure 3.3: 10× 10 SOM trained with samples from the RGB color space.

3.1.2 Properties

Some of the SOM algorithm’s properties can be illustrated with a simple example. Assume the samples from

the RGB color space in Figure3.3a are used to train a10×10map. Both the samples and the map weights are

represented by vectors[ri, gi, bi] containing the the red, blue and green color components. Figure3.3b shows

the initial SOM with weights randomly assigned. After training the map with a few thousands samples from

the input space, the final weights assume the values shown in Figure3.3c. The results illustrate the following

properties:

1. SOM implements aprojection technique: the three-dimensional input space is mapped onto a two-

dimensional surface.

2. SOM implements aVector Quantization(VQ) technique. In this case, 100 vectors were selected as

representative values of a much larger input set.

3. SOM generatestopologically orderedresults, in the sense that similar information is mapped to nearby

locations. This property emerges as a consequence of the update rule: since adjacent neurons are sub-

jected to similar weight changes, they eventually converge to similar values.

3.2 Localization using SOMs

As seen in the previous section, a SOM can be used to process a large amount of multi-dimensional infor-

mation and represent it using a compact, low-dimensional model. After training a map, the same election

rule (3.1) discussed in Section3.1 can be used to translate new samples into their correspondingcodebooks

(vector quantization) or to project points onto a two-dimensional surface.
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These properties has been used in the past to implement localization schemes for mobile robots in

unknown environments [73, 51]. As the robot explores a new space, the multisensory data collected by

on-board sensors are fed to a SOM that organizes them on the basis of their similitude. Assuming that

sensor readings are correlated with their positions, the SOM defines a virtual map for the space just explored:

the robot’s location is given by theBMU that matches the current sensor readings. Ertin and Priddy [47]

have applied the same concept to the localization problem in WSNs. In their work, synchronous snapshots

gathered from the sensors are used to train a SOM, producing a set of weights that define a grid of so-

called virtual sensors. The node coordinates are approximated by the grid position of the virtual sensor

that matches the actual sensor measurements. The authors suggest possible application to target tracking.

A similar approach has been used by Sakurai et al. [146] for human tracking in an indoor space, and by

Xu et al. [173] for localization of mobile users using RSS from cellular base stations. Finally, Takizawa et

al. [163] have proposed a range-based scheme based on an update rule similar to the one used by SOM. These

approaches are discussed in more details in Section3.10.

Proposed Approach

The solution described in this section differs from previous SOM approaches because it does not assume

the availability of sensors readings or range estimates, and it does not use the concept of virtual sensors.

The proposed solution uses proximity information derived by radio communication and explicitly compute

each node’s position during the map’s training. This application of SOM to the node positioning problem is

inspired by two simplifying assumptions:

1. The sensor distribution is (approximately) uniform in the deployment area.

2. Nodes that are radio neighbors are relatively close to each other.

Successively, these two assumptions will be relaxed by considering non uniform deployments and

more realistic propagation models; however 1) and 2) are useful to illustrate how the SOM technique leads to

an intuitive localization scheme.

Imagine that the deployment area is the square region in Figure3.4a and that a large number of

points [xi, yi]t are sampled inside this area and used to train a SOM, say a5 × 5 square map. Since the

training samples and the map vectors have the same structure, each weight defines a position in the 2D plane.

Figure3.4b shows the values of the random weights, where segments of line are used to link the position of

adjacent neurons. As the map is trained, the weights assume the values shown in Figure3.4c-f. Similarly to
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Figure 3.4: 5× 5 SOM trained with random samples from a 2D training set.

the example of Figure3.3, the SOM weights approximate the input distribution, and the weights of neurons

that are close on the map converge to similar values. Note that the coordinate assignment in Figure3.4f is

compatible with the positions of an hypothetical 25 node WSN that meets the two assumptions stated at the

beginning of this section. More in general, the weights of a SOM trained with points from a 2D uniform

distribution can be used as an approximation for the positions of an arbitrary set of wireless nodes. For this

purpose, the number of neurons in the SOM needs to match the number of nodes in the WSN, and the map

has to be organized in such a way that neighbor nodes are associated to adjacent neurons. The next sections

formalize the use of SOM as a tool for sensor network localization.

3.2.1 System Model

Consider a connected network withn nodes placed at unknown locations. None of the nodes is equipped

with hardware for position, range or angle estimation, and no assumption is made regarding the availability

of sensors; however, nodes can determine their radio neighbors. Letdhop(i, j) denote thehop distance, i.e.

the minimum number of transmission required to transfer a message from a nodei to a nodej.

3.2.2 Modified SOM Model

The unknown node positions are computed using a SOM withn neurons. Each neuronj corresponds to

a sensor node and contains a weight vectorwj = [xj , yj ]t. This vector, initially picked at random, will

eventually contain the estimated location for the corresponding node. The map is trained using the same
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algorithm described in Section3.1, but with a modified neighborhood function to account for the spatial

relationships among the sensor nodes. The new neighborhood function use the hop count distancedhop map

distance in place ofdmap :

hcj = exp

(

−
dhop(c, j)

2

2σ2

)

. (3.4)

The use ofdhop implicitly defines a lattice of neuron with a structure that reflects the hop-count distance

between each pair of sensor nodes (see Figure3.5).

Having described the structure of the weights and the map, the last step involves the choice of a

proper training set. To understand how to generate the training samples, note that since no reference points or

range information are used, the SOM’s results will be correct up to global translations, rotations, flipping or

scaling (see Section2.2). This is a consequence of input used and not of the SOM technique; in other words,

any range-free, anchor-free scheme will generate similar results. While these ambiguities might appear as

a potential complication, in reality they simplify the algorithm’s implementation. In fact, since the result

will be expressed in an arbitrarily coordinate system, random samples from an arbitrary distribution (e.g.

0 ≤ x, y ≤ 1) can be used to train the SOM.

3.2.3 Localization Algorithm

The algorithm is centralized; therefore each node needs to communicate the list of its radio neighbors to the

unit in charge of the computation. Using this information, the hop-count distances between each pair of nodes

are computed by first representing the network as a graph, and then applying the Dijkstra or Floyd algorithm.

Assume hop distances stored in a matrixDh with elements[dh]ij = dhop(i, j): The matrixDh is the only

input parameter to the algorithm.
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Algorithm 1 : 2D SOM-V Localization

Input: matrixDh: hop count distances among nodes

Output: [xj , yj ] for j = 1, . . . , N : node positions

% Parameter Initialization

1: ηmax= 0.1; ηmin = 0.01;

2: σmax= max
i,j
{Dh}/2; σmin = 0.001

3: for all nodesn do
4: [xn, yn]

T = random()

5: end for

% Main Loop

6: for n = 1 : to N_ITER do
7: η = ηmax− n(ηmax− ηmin)/(N_ITER− 1)
8: σ = σmax− n(σmax− σmin)/(N_ITER− 1)

9: (x, y) = random()
10: c = argmin

j
‖(x, y)− (xj , yj)‖

11: for all network nodesj do
12: hcj = exp

(
−Dh(c, j)2/2σ2

)

13: [xj , yj ]+= η hcj([x, y]− [xj , yj ])
14: end for

15: end for

Algorithm 1 contains the pseudo-code of the localization scheme. The learning parameterη(n)

and the radiusσ(n) are scheduled using a linear function that decreases with the number of iterations (see

lines 7 and 8). The version of the code described by Algorithm 1 is dubbed SOM-V, because, as discussed

in Section3.4, it generatesvirtual coordinates. Alternative versions (SOM-A, SOM-R) are discussed in

Section3.5and Section5.2.

3.3 Simulation Model

The proposed localization schemes have been validated using extensive simulations that were generated in

the attempt to model realistic network configurations. Before presenting the results of such experiments, the

simulation model is described.
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Figure 3.6: a) The noisy grid model; b, c) two 100-node networks with different perturbation factors.

3.3.1 Placement Model

The simulation scenarios are generated according to anoisy griddeployment model where the node positions

correspond to the intersection points of a regular grid with rows and columns spaced by a factorr (see

Figure 3.6a). To capture the random nature of an ad-hoc deployment, each coordinate is perturbed with

samples from normal random variables:Δx,Δy ∼ N (0, σN ). The parameterσN controls the amount of

noise:

σN = PF r, (3.5)

wherePF is thePerturbation Factorparameter (PF ≥ 0) that defines the magnitude of the noise relative to

the grid spacingr. Figures3.6b,c show two 100 node topologies with increasing values of the parameterPF.

Simulations in Section3.5.4also consider topologies with node positions sampled fromindependent

and identically distributed(i.i.d) random variables. However, the noisy grid model is sometimes more ap-

propriate to describe typical WSN deployments. For example, in most applications such as environmental

monitoring and precision agriculture, some control is exerted to ensure an approximate uniform coverage

of the monitored area. The noisy grid model also makes it easier to generate connected networks with low

connectivity (e.g. 4 or 5), while in the random model, the probability of having connected networks rapidly

goes to zero as the communication range is reduced [88].

3.3.2 Connectivity Model

Initially, neighbor nodes are defined on the basis of anideal radio model. If R denotes the maximum com-

munication radius, then two nodes are considered “connected” if their separation distance is less thanR, and

“disconnected” in the other case. Although this model over-simplifies the nature of wireless communication,
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the use of ideal connectivity is intuitive and facilitates comparison with previously published results. A more

realistic connectivity model will be considered in Section4.1.6.

3.3.3 Error Metric

The performance of the proposed schemes is evaluated by computing the average localization error relative

to the communication range:

Avg. Error (R) =
1

R

n∑

i=1

√
(x̃i − xi)2 + (ỹi − yi)2

n
, (3.6)

wheren is the number of nodes,(x̃i, ỹi) are the estimated coordinates,(xi, yi) are the true node positions,

andR is the communication range. Later simulations will use a different error metric to facilitate comparison

with the Cramér-Rao bound (Section4.1.7).

3.4 Anchor-Free Localization: Virtual Coordinates and Geo-Routing

The SOM-V code described in Section3.2.3implements the basic version of the SOM localization algorithm.

Since only connectivity information are used, SOM-V generatesVirtual Coordinates[116] that describe the

relative location of nodes, in the sense that nodes with similar coordinates are physically close. Virtual coor-

dinates, which facilitate network tasks such as location-based queries and proximity-based service discovery,

have found prominent application in the area of geo-routing [78, 90, 142]. By knowing the relative node posi-

tions, these schemes achieve efficient packet delivery without the memory overhead of table-driven protocols

or the latencies of on-demand approaches.

A direct comparison between virtual coordinates and the ground truth is not possible1; therefore

the performance of ageo-routingscheme is used to evaluate the quality of the virtual maps produced by

SOM-V. A similar approach has been used to evaluate other range-free schemes, e.g. [125] and [64]. The

routing scheme used to validate the localization results implements a simplegreedyapproach: given a source

and a destination pair, each intermediate node forwards the message to the neighboring node closest to the

destination. The selection rule is:

next_hop= argmin
n
‖(xn, yn)− (xdest, ydest)‖ , (3.7)

1 For range-based localization algorithms that operate without anchor nodes, some quality metrics based on the inter-node distances
are available (e.g. see theGlobal Energy Ratio(GER) in [139]). However, in the case of range-free localization, the results are not only
possibly rotated or flipped, but also arbitrarily scaled; therefore error metrics bases on the inter-node distance are not applicable.
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where(xn, yn) are the virtual coordinates of the neighboring nodes,(xdest, ydest) are those of the destination,

and‖∙‖ denotes the usual Euclidean norm. This basic scheme simply gives up if it is unable to get closer to

the destination; however, it defines an useful comparison baseline for more advanced strategies.

Figure3.7a represents a 64 node network deployed in a square region with side30m andPF param-

eter equal to 25%. The goal is to discover the routing path between two nodes in the corner of the network.

This sample application first uses SOM-V to compute a virtual map of the network, and then uses (3.7) to

find the route between the two nodes. Figure3.7b shows the virtual map together with the routing path.

The discovered path path is optimal in these in the sense that its length is equal to the minimum hop count

distances between the nodes.

A more exhaustive simulation experiment considers 50 topologies similar to the one in Figure3.7a

with PF uniformly selected in the interval between 10% and 50%. For each topology, the rule (3.7) is used

to route messages between 50 pairs of randomly selected nodes. Figures3.8a and3.8b show the simulation

results for different connectivity levels obtained by varying the communication rangeR. The delivery ratio of

the scheme using the SOM-V coordinates is close to the value achieved when using the true node positions,

and it rapidly approaches 100% as the connectivity increases. The results show no substantial differences

between the lengths of the routing paths produced using SOM-V and the length of those computed using the

true coordinates. The two plots are almost completely overlapping in Figure3.8b.
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3.5 Anchor-Based Localization: Absolute Coordinates

Virtual coordinates are useful to implement efficient packet routing and other network tasks, but some ad-hoc

networks require absolute positioning. For example, in a disaster relief application, knowing the sensor posi-

tions is necessary to accurately pinpoint the location of an event and provide prompt assistance. To convert

relative node positions into absolute coordinates, at least three non-collinear anchor points are needed for the

two-dimensional case. When this information is available, the virtual maps are aligned by applying a linear

transformation that resolves rotational, scaling and flipping ambiguities. Thisa-posteriori transformation

can be used to align the results of any anchor-free localization technique, including SOM-V. The basic SOM

algorithm, however, can be modified to include anchors’ information in the training phase of the map. This

modification not only generates absolute coordinates, but also increases the scheme’s accuracy for networks

with low connectivity.

3.5.1 Exploiting Anchor Information: The SOM-A Scheme

Theanchoredversion of the algorithm, SOM-A, is derived from the basic version by applying three modifi-

cations:

1. Weights corresponding to anchors are initialized with the true node positions and never updated.

2. Whenever an anchor node is elected asBMU, the training sample at current iteration is replaced with the

anchor’s position.
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3. The training points are sampled from a distribution whose values are compatible with the deployment

area’s coordinates.

The first two modifications ensure that weights corresponding to anchors remain in their position. The pres-

ence of these fixed points facilitates the map organization during the initial iterations and, assuming three or

more anchors, allows SOM-A to generate maps that do not require alignment.

The last modification ensures that weights converge to meaningful values. Different from SOM-V,

working with absolute coordinates requires to take into consideration the physical dimensions of the de-

ployment area. In SOM-A, the sampling area is obtained by considering the rectangle enclosing the anchor

locations; anchors are assumed to be located near the perimeter of the deployment area, preferably close to

the corners. If the network containsm anchor nodes placed at locations[x(k)a , y
(k)
a ] for k = 1, . . . ,m, then,

the training pointsxi = [xi, yi] are generated by sampling an uniform distribution in the following intervals:






xi ∈ [x(min)
a −Δax; x(max)

a +Δax]

yi ∈ [y(min)
a −Δay; y(max)

a +Δay],

(3.8)

wherex(min)
a = min{x(k)a }, x(max)

a = max{x(k)a }, and the valuesy(min)
a andy(max)

a are computed simi-

larly. The sampling area is expanded in each direction by factorΔax andΔay to compensate forborder effects

that are notorious in the use of SOM technique. Border effects arise because boundary neurons have fewer

neighbors than inner neurons; as a result, the weights along the perimeter of the map are slightly contracted

toward the center. To compensate for this effect, the sampling area is slightly expanded by experimentally

determined factorsΔax andΔay:

Δax =
x(max)
a − x(min)

a√
n+m− 1

and Δay =
y(max)
a − y(min)

a√
n+m− 1

, (3.9)

wheren+m is the total number of network nodes (anchors and non-anchors).

3.5.2 Comparison Between SOM-A and SOM-V

Figure3.9reports the average localization error for the same set of 50 networks used in the previous section,

assuming the presence of three and four anchors in the corners of the map. The results of SOM-V, which

are obtained using thea-posterioritransformation described earlier, are compared against those of SOM-A.

The plots show that the anchored version is more effective in localizing network with low connectivity. For
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Figure 3.9: Average localization error for a set of 50 random topologies with 64 nodes deployed in a30m×
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networks with connectivity equal to four, SOM-A reduces the error by 52% when three anchors are present,

and by 32% when four anchors are available.

Although comparison with other schemes is deferred to Section3.5.4, the SOM-A’s results in Fig-

ure3.9b show a localization error as low as0.3R for networks with average connectivity equal to five and

using only 6.25% of anchors nodes (4 anchors out of 64 nodes). These figures suggest SOM-A as a suitable

approach for localization in low-cost deployments with low connectivity and a small percentage of anchor

nodes. These networks are likely to be exploited for applications such as environmental monitoring and pre-

cision agriculture, where slowly varying signals such as temperature and humidity are monitored over large

areas. In these applications, nodes are often placed in sparse configurations to reduce the installation and

maintenance costs.

3.5.3 Weight Initialization and Convergence

The results in Figure3.9were obtained using random initialization of the weights and 2000 training samples.

Existing SOM literature (e.g. [84]) shows that different initialization strategies might influence both the con-

vergence speed and the topological accuracy of the solution. Understanding the effect of the initial weights

and number of iterations on the final results is important because the scheme may execute on nodes with

limited computational resources.

The previous simulations were repeated by varying the number of iterations and using different

initialization strategies. In addition to random initialization, alternative initialization strategies are considered:

the AFL and LINE initialization schemes. The AFL scheme has been proposed by Priyantha et al. [139] to
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(a) SOM-V, various initialization schemes.
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(b) SOM-A, random initialization
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Figure 3.10: Average localization error as a function of the number of iterations used in training the map.
The results were generated using the same set of networks discussed in the previous section.

generatefold-freeinitial configurations for a spring-mass based algorithm; the LINE initialization is simple

scheme that aligns the initial weights along a line. In a previous work at the IMPACT lab, this heuristic was

found to be effective in reducing the occurrence of maps with large topological errors [55]. Finally, a baseline

comparison is obtained by considering the error when the weights are initialized with the true node positions.

Figure3.10a shows the SOM-V’s error as a function of the number of iterations for networks with

average connectivity equal to four. This value is considered because preliminary simulations have shown that

the differences between alternative initialization schemes are most noticeable for topologies with low con-

nectivity. Even in this case, however, the error plots converge to a similar value as the number of iterations

increases over 1000. The weak correlation between the final error and the initial weights is a consequence

of training the map with a large neighborhood function. In Algorithm 1, the initial standard deviation for

the Gaussian kernel is equal to the radius of the network:σmax = max (Dh) /2 . Such large value causes

strong interactions among the neurons; therefore, during the initial iterations, the weight vectors will assume

a similar value close to the centroid of the input distribution, regardless of the initial positions. If the neurons

were already partially ordered, the convergence speed of the map could be improved by using a smaller value

for σmax to preserve some of the initial information. The work in this dissertation do not pursue this strat-

egy because using a narrower neighborhood function will occasionally result in maps that are only partially

ordered (see Figure3.11).

Figure3.10b shows the SOM-A’s error for the same set of simulations used in the previous case.

When the node positions are computed using SOM-A, the differences between alternative initialization strate-

gies become negligible even for a low number of iterations. Given the minimal differences, the results only
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(c) Converge Problem

Figure 3.11: Localization example. If the neighborhood function’s initial radius is not wide enough, SOM
will occasionally produce incorrect results (case c). This problem is avoided by using the values in Algo-
rithm 1.

show the error obtained using random initialization for networks with low and medium connectivity. The

error decreases similarly in both cases and stabilizes around 3000 iteration for connectivity equal to four, and

about 2000 iterations when the connectivity is equal to ten. Since the execution time of the algorithm depends

on the number of training samples (i.e. the number of iterations), adjusting this parameter provides a mean

to optimize the trade-off between accuracy and resources spent (see Section3.6).

3.5.4 Comparison With MDS and DV-HOP

SOM-A is compared with two popular range-free solutions, the DV-HOP andMulti Dimensional Scaling2

(MDS) schemes described in Section2.3.

Figure3.12shows the localization results for four sets of 50 random topologies with 64 nodes de-

ployed in a square region with side equal to30m. Three of the four sets were generated using the noisy

grid model described in Section3.3.1with PF = {10%, 25%, 50%}, while the last set contains networks

with node positions sampled fromindependent, identically distributed(i.i.d.) random variables. Note that

networks withPF greater than 50% are qualitatively similar to random deployments.

The plots in Figure3.12show that the results generated by SOM-A and DV-HOP have a similar trend,

but SOM-A consistently produces a lower error. The SOM-A’s results, which were are obtained using random

initialization and 5000 training samples, are 27% to 45% more accurate than DV-HOP. The differences are

more marked for networks with perturbation factor equal to 10%.

In comparing the performance of SOM-A with MDS, the results depend on the network connectiv-

ity. The difference are negligible for networks with connectivity greater than ten, but SOM-A significantly

outperforms MDS for sparse networks. When the connectivity is equal to four or five, the SOM-A’s error

2The Isomap version that that uses the hop-count values as a distance measure between pair of nodes is evaluated [164].
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Figure 3.12: Average error achieved by SOM-A, DV-HOP, and MDS in localizing sets of 50 networks with
increasing perturbation factors. All networks have four anchors.

is approximately between 40% and 60% lower than the MDS’s error. In general, when the connectivity is

low, the hop-count distances are poor approximations of the true node distances, especially for nodes that are

several hops away. Since MDS equally weights all the available distances, including those with large hop

values, the error in sparse networks are usually large. SOM-A does not exhibit this drawback because nodes

that are several hops away have a weak effect on each other’s positions.

A second set of experiments localizes sets of 25 random networks with increasing numbers of nodes.

The connectivity values are fixed to five and ten (see Figure3.13). In the first case (connectivity = 5),

the simulated networks (random deployment) contain up to 200 nodes; given the low connectivity value,

above this size it becomes progressively more difficult to generate connected networks. In the second case

(connectivity = 10), the networks include up to 350 nodes. The SOM-A technique ensures a localization error

around1.0R up to 200 nodes and connectivity equal to five. If the connectivity is increased to ten, the error of

SOM-A maintains below0.5R for networks up to 350 nodes. The results obtained for the other two schemes
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Figure 3.13: Average error of SOM, DV-HOP, and MDS in localizing sets networks with increasing number
of nodes and four anchors: a) Network connectivity equal to five; b) Network connectivity equal to ten.

are consistent with those published by Niculescu and Nath [125, 128] for DV-HOP, and those reported by

Shang et al [154] for MDS. The error generated by both schemes is significantly higher than the SOM-A’s

error, especially for networks with low connectivity.

3.6 Computational Complexity Analysis

The SOM-V and SOM-A variants are centralized schemes, but the low communication and computation

requirements make them suitable for sensor networks where nodes have limited resources. An analysis of the

computational complexity and memory requirements follows.

The SOM algorithms operate on the basis of connectivity information; therefore each sensor needs

to communicate the set of its radio neighbors to the unit in charge of the computation. Assuming two-byte

node IDs (up to65536 nodes), the information can be transmitted using a fairly small size radio messages.

For example, in a network where the average connectivity is 7, only 14 bytes need to be transmitted by each

node. The total traffic can be further reduced by means of in-network data aggregation techniques.

Messages with neighbor sets information are used to generate the adjacency matrix of the undirected

network graph requiring[n(n − 1)/2]/8 bytes of memory space, and then to compute theDh matrix with

the hop count distances between nodes. The solution is obtained by repeatingn executions of the popular

Dijkstra’s algorithm or using the Floyd’s scheme. The complexity isO(n3) in both cases, while the table

needs enough storage space forn(n−1)/2 elements. The memory requirements for this table can be reduced

by taking into account the maximum hop count distance between any two nodes (i.e. the network diameter).

The proposed simulations show that most of the 100 node networks with connectivity equal to six have a
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diameter lower than 16. Using 4 bits to code the hop-count distances, the size of the table is reduced to

n(n − 1)/4 bytes of memory. Even if some hop distances were larger than 16, replacing the actual value

with the upper limit does not have a noticeable impact on the algorithm because the interactions between

units far from each other are weak. Finally, the algorithm needs to reserve the memory space to store the

node coordinates (i.e. the SOM weights). Assuming quantized values represented with 2 bytes, the total

occupation is4n bytes.

As for the computational complexity of SOM localization approach, the iterative solution allows a

trade-off between accuracy and execution time (see Section3.5.3). Each iteration requiresn comparisons to

compute theBMU, and the application of the update rule (3.2) to the map weights. Considering that the radius

of the neighborhood function shrinks from a value initially equal to the network radius and then goes to zero,

the average number of weight updates is approximatelyn/2. Note that, as the widthσ of the neighborhood

function shrinks, the running time of the solution could be further reduced by only applying the update rule

to those weights that are close to theBMU.

Fixed the maximum number of iterations, the SOM training algorithm has linear complexity O(n).

However, the simulation results presented in this chapter (see Figure3.10) and Chapter5 (see Figure5.5 at

pag.101) show that increasing the number of iterations for larger number of topologies can reduce the final

average error. If the number of iterations is not fixed at priori, but selected as a function ofn, the complexity

of the algorithm is no longer linear.

Although increasing the number of iterations can improve the quality of the results, using a large

number of iterations is not necessary to ensure the convergence of the map. Since the learning parameters are

decreased monotonically, the convergence to a stable weight configuration is always ensured.

3.7 Implementation on a Resource-Constrained Sensor Node

The SOM algorithm can be easily implemented in any programming language and it converges to a solution

in a limited amount of time. For example, it takes about 0.3 seconds to localize a 100 node network by

executing 5000 iterations of MATLAB code on a PC with a2.66GHz CPU. More interesting is to evaluate

the execution time on embedded hardware commonly used in sensor network applications. The SOM code

was implemented using nesC/TinyOS3 and executed on a TelosB [138], a popular COTS sensor node with a

16-bit RISC microcontroller featuring 10KB of RAM, 48KB and working at the frequency of8MHz. The

3http://www.tinyos.net
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N. Nodes Memory Exec. time Dijkstra Exec. time for 1000 iter.
36 0.42 KB 1 sec 62 sec
64 1.48 KB 6 sec 102 sec
100 3.42 KB 22 sec 156 sec

Table 3.1: Memory requirements and execution time of the SOM-A algorithm on a TelosB node equipped
with a 8 MHz microcontroller.

algorithm in Section3.2.3was slightly modified by replacing the Gaussian neighborhood function with a

triangular function. The modified neighborhood function produces similar results using less computation.

Table3.1 reports the memory occupation of the data structures described above and the execution

time to compute theDh matrix and then to perform 1000 iterations of the localization algorithm. Even using

these highly constrained nodes, it only takes about 3 minutes to localize a network with 100 nodes. During

the computation, the radio can be turned off and the microcontroller draws only few milliamp of current, with

negligible impact on the energy budget of the sensor node. In particular, on a TelosB node, the current drawn

by the microcontroller is about ten time less then the current drawn by the radio: the energy spent to localize

a 100 node network is about the same energy consumed by the radio in 20 seconds.

3.8 Online vs Batch Training

Algorithm 1 at page32 implements the standard version of the SOM technique. In the approach used, the

map is trained using an online scheme, i.e. the weights are updated at the end of each iteration. Alternatively,

the map can be trained using a batch variant in which all the samples are presented to the network before

updating the weights [84]. To implement the batch algorithm is sufficient to compute the widthσ of the

smoothing kernel using a monotonically decreasing function; the use of the global learning parameterη is

not necessary. Additionally, the batch version has been shown to yield more stable asymptotic weights than

the standard SOM [84, 4].

Despite the potential advantages of the batch training, this method did not improve the error in

the positioning application considered in this chapter. In all the preliminary simulations performed, the

best results were obtained using the online version of the scheme. The better performance of the standard

algorithm is probably explained by the nature of the input set used to train the map. Differently from many

SOM applications, the training samples are generated by sampling an arbitrarily large number of data points.

In this case, since the data set is not fixed, there is not advantage in computing the weight updates after having

presented all the training points to the map.
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Figure 3.14: Number of messages transmitted in a 400 node sensor network to enable localization with
DV-HOP (distributed) and SOM (centralized). Neither flooding nor the collection tree protocol have been
optimized.

3.9 Comparison with Distributed Localization Schemes

Recently, several research efforts have been directed toward the study of distributed localization algorithms.

This interest is motivated by some limitations of the centralized computation model. Centralized localization

is not a viable solution when: 1) The communication overhead to transfer the input data to a central unit is

too high; 2) None of the devices in the system possess the computational resources to compute the whole

solution; 3) The results are critical and introducing a single point of failure will put the reliability or security

of the system in jeopardy; 4) The application require privacy; therefore, similar to GPS, the location should

be estimated by the device itself.

In applications requiring privacy, the use of a centralized scheme like SOM will not satisfy the

requirements. In other application scenarios, a centralized scheme might be preferable to a distributed al-

gorithm. As shown in the previous section, the complexity of SOM is linear in the number of nodes, and

the algorithm can be executed on hardware with limited resources. Given the modest computational require-

ments, not only the SOM scheme can be executed on a single device, but it can also be deployed on a few back

up units to improve the system reliability. Additionally, the majority of the nodes not involved in the com-

putation will only run the application software, thus reducing potential failures due to conflicting software

modules.

Another factor to take into consideration when comparing localization schemes is the number of

messages transmitted within the network. In most sensing applications, the nodes are pre-programmed to

report their readings to a central unit. Low-power tree collection protocols are available as part of the ZigBee

standard [86] and the TinyOS [6]; other custom implementations are available from radio chip manufac-
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Figure 3.15: Average number of messages per node transmitted in a sensor network to enable localization
with DV-HOP (distributed) and SOM (centralized).

turers (e.g. [3]). The information about the neighboring set of each node, i.e. the input data required by

SOM, could bepiggybackedon the sensor readings already transmitted without a significant communication

overhead.

Even if the information required by SOM had to be transmitted independently, in some cases the

energy requirements will be lower than those of a distributed scheme. Consider the DV-HOP algorithm used

for comparison in this chapter. The DV-HOP is a good example of a distributed scheme: Each node computes

its own position using information from the network. However, this approach requires each anchor to flood

the network with two waves of messages: the first one to compute the hop count distance, and the second to

transmit the scale factor for each hop. In a network with four anchors, each node will transmit eight messages.

Other popular distributed schemes such asN-hop multilateration[151] and Robust positioning[148] use a

similar approach (see the work of Langendoen and Reijers for a detailed comparison between the three

approaches [93]).

Figure3.14shows the number of transmissions required to implement SOM and DV-HOP in two

randomly deployed networks with four anchor nodes and number of nodes equal to 196 and 400, respectively.

For SOM, each node transmits its neighbor list by sending a packet to a sink node that, in the simulation,

is supposed to be in the center of the network; therefore the same packet have to be re-transmitted several

times until it reaches the sink. Despite no data aggregation techniques are used, the number of messages

is significantly lower than a scheme that uses a flooding mechanism such as DV-HOP. The same results are

shown in Figure3.15by reporting the average number of transmissions per node. For example, on a 400

node network with connectivity equal to 15, each node needs to transmits, on average, about four messages,

exactly half of the messages required by DV-HOP. Therefore, if the node positions will be used at the central
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unit (e.g. to interpret the sensor data), a centralized solution such as SOM might result in a communication

overhead lower than that of a distributed algorithm such as DV-HOP.

If the positions have to be used by the node themselves (e.g. georouting), the energy expenditure to

transmit the results back to the network might render a centralized scheme not attractive. In general, while

the two approaches will have to be evaluated case by case, the author believes that the use of centralized

scheme could be beneficial even in large scale deployments. Other considerations on the two approaches are

discussed in Section5.3.

3.10 Related Work

This section focuses on previous localization research using SOM. The relation between the theoretical as-

pects of localization and convergence results available for self-organizing maps are also discussed.

3.10.1 Localization Using SOM

Ertin and Priddy [47] have used SOM to solve the localization problem in WSNs. Their model is based

on the assumption of devices capable of sensing a common phenomena, such as acoustic or seismic, at

synchronized time steps. A further assumption is that the correlation between sensor readingssi andsj from

nodesi andj is a function only of the distance between nodes:E[sisj ] = f(‖pi − pj‖), wherepi = (xi, yi)

andpj = (xj , yj) are the physical location of the two sensors. The input samples used to train the SOM are

obtained by concatenating the sensor readings collected at each time step:xn = [s
(n)
1 , . . . , s

(n)
N ], wheres(n)i

is the output of sensori at time stepn. Once the map has been trained with the samplesxn, each neuron

contains a weight vectorwj = [wj1, . . . , wjN ] whose dimensionality is equal to the number of nodes in

the network. At this point, there is not a direct correspondence between the neurons and the position of the

sensor nodes yet, however, the authors suggest that each sensori can be associated with the neuronj having

the largest componentwji. The relative position of such neuronj in the lattice of neurons defines the virtual

coordinates of sensori. No numerical results are provided to characterize the accuracy of the solution, but

the authors qualitatively describe a possible application to the target tracking problem.

A similar approach has been used by Sakurai et al. [146] to implement a tracking application for

people moving inside a building. Similarly to the previous case, the input samples used to train the map

contain the value sensed by then sensors installed in the monitored area:xn = [s
(n)
1 , . . . , s

(n)
N ] . In this

application the SOM is not used to compute the physical location, but to create alogical mapwhere sensor
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readings with similar values are grouped together. Again, only a qualitative analysis of the result is presented.

Numerical results are instead provided by Xu et al. [173], who have used SOMs to track the movement of

people in large outdoor areas using signal strength values measured from nearby cellular stations. In their case

the training samples are given by the RSS value collected by the mobile users as they move among the cells

covered by several base-stations. This approach and the others described above are substantially different

from the scheme presented in this work and have more resemblance with otherfingerprinting localization

techniques (see, for example [14, 107]).

Takizawa et al. [163] have proposed a distributed range-based scheme that uses some of the concepts

found in the SOM technique. In this approach, the nodes use a modified version of the update rule (3.2)

discussed in Section3.1 to iteratively update their position. Interaction between nodes is limited to 1-hop

and 2-hop neighbors. This method is similar to the refinement phase used in several range-based schemes

(see, for example [151, 148]), and it is susceptible to convergence to local minima. An heuristic solution is

proposed to avoid this situation. Paladina et al. [133] have also proposed a distributed localization scheme

based on the use of SOM. Their model assumes nodes deployed in a regular grid, therefore each node can

be thought as positioned in the center of a small3 × 3 SOM where the remaining eight neurons contain the

position of the surrounding one-hop neighbors. Each node uses this small SOM to process the the positions

transmitted by its neighbors and compute its own position, which is then propagated to the remaining nodes.

The SOM approach described in this chapter is analogous to previous applications of the SOM

technique to graph drawing [114, 24], a branch of graph theory that deals with the visualization of complex

graphs. The graph layout problem is similar to localization in the sense that it also seeks to find a coordinate

assignment such that vertices connected by edges are positioned close to each other. But, while the evaluation

of a graph layout is mostly based on aesthetic factors (e.g. uniform distribution of nodes and edge lengths,

separation between graph elements, number of edge crossing), the results of the localization assignment are

directly comparable with the true sensor locations. This work explicitly focused on reducing the localization

error of SOM maps.

3.10.2 Theoretical results

The theoretical results discussed in Chapter2 help in understanding the intrinsic difficulty in computing the

node positions and why, in the general case, only approximate solutions are available. The merit of applying

the SOM technique to the localization problem is that it provides a low-complexity solution that has been

shown to produce accurate localization results in different localization scenarios. Regarding the SOM tech-
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nique itself, despite the attention received, self-organizing maps algorithm have proven to be very resistant to

mathematical characterization and theoretical results are only available for one-dimensional configurations

of neurons. The first formal proof on ordering and convergence properties of SOM has been presented by

Cottrell and Fort [41] for uniform distribution of the input samples and a step-neighborhood function. The

proof has been extended to more general neighborhood function by Fort and Pages [49], but theoretical results

for the two-dimensional case are still incomplete [42].

3.10.3 Discussion

A lack of formal proof in the general case does not necessarily penalize this approach with respect to other

techniques. Given the possible ambiguity in the localization results and additional uncertainty caused by

the noise in the measurements, even a solution with proven convergence properties would not be guaran-

teed to converge to the ground truth. At present, simulations and test-field experimentations are the only

tool available to compare the performance of different localization schemes working under realistic system

configurations. This is also the approach followed in developing the results in this chapter.



Chapter 4

Understanding the Limits of RF-Based

Localization

The SOM localization algorithm discussed in the previous chapter implicitly assumes the existence of a

service capable of determining whether two nodes should be considered neighbors. This chapter specifically

focuses on on the measurements available by exchanging radio messages, and, in general, on the performance

of RF-based localization. Two fundamental problems are addressed. The first one is how to convert the

information collected by the transceiver into connectivity constraints (see Sections4.1and4.2). The second

problem is how to decide when to implement a range-free or a range-based scheme (see Sections4.3 and

4.4). Since radio messages support both approaches, solving these problems has practical implications for

implementing RF-based localization systems.

The analysis in the following sections adopts aparameter estimationapproach based on evaluation

of the Fisher Information and the Cramér–Rao bound (CRB). The presented results serve to understand the

parameters that affect the performance of the two approaches and and suggests strategies to reduce their error.

4.1 Localization Based on Radio Connectivity

As discussed in Chapter2, radio messages support an inexpensive approach to obtain proximity information.

The principle is simple: since each node has a limited communication range, the successful transmission of

a radio packet from node A to node B implies that the two nodes are close in space. The use of connectivity

information is also appealing for the following reasons:
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1. Since nodes already exchange data using radio messages, connectivity information is easy to acquire or

it might be already available; in fact, many contention-free MAC protocols and routing algorithms also

require this information.

2. Connectivity between a pair of nodes is a binary value. This one bit information can be efficiently

communicated across the network with minimal impact on the energy budget of sensor nodes.

3. Several localization schemes are available to process connectivity data on hardware with limited memory

and computational resources (e.g. [30, 55]).

Another merit of connectivity-based localization schemes is that they are easy to simulate. Using

the idealized radio model1 widely adopted in previous research work, connectivity between nodes can be

simulated regardless of the complex phenomena that regulate RF propagation. However, although the ideal-

ized radio model provides an abstraction useful in simulation studies, it does not define a criterion to obtain

connectivity data in real world applications. In other words, system designers implementing a connectivity-

based scheme will have to define their own rule to establish which nodes are to be considered neighbors.

In the Centroid scheme [30], for example, nodes are regarded as neighbors if at least 90% of the message

transmitted are successfully received. Unfortunately, simple, but arbitrary rules like this one will not always

produce satisfactory results.

4.1.1 Motivating Example

Consider the case where one wants to localize the nodes in Figure4.1a. The data2 for this network has been

collected by measuring the average RSS between pairs of nodes in the cubicles of an office space [136]. Note

that every node of this network is in the radio range of every other node, and no packet loss was reported.

Application of a connectivity rule based on percentage of received packets produces afully connected

network.

To get a sense of how range-free localization works in this scenario, nodes 3, 10, 35, 44 are used

as anchors, while the remaining nodes are localized using three different schemes: DV-HOP [127], Multidi-

mensional Scaling (MDS) [154], and localization using Self-Organizing Maps (SOM) [55] described in the

previous chapter. The localization results are reported in Figure4.1b,c,d. In all of the three cases the position

estimates are largely incorrect; the average error is between 4.97 m for SOM to 10.4 m for MDS.

1Two nodes are connected if their distance is less than a fixed radius.
2http://www.eecs.umich.edu/~hero/localize/
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(d) SOM

Figure 4.1: Localization errors for a 44-node network deployed in the cubicles of an office space. a) Original
Network; b,c,d) Localization results using DV-HOP, MDS, and SOM. Segments of lines are used to connect
the true node position to the estimated ones. The long lines in all the three plots denote large errors.

The large localization errors in Figure4.1 are not surprising. Since the network is fully connected,

any connectivity scheme will try to position the nodes close to each other, thus resulting in a large error.

Accurate localization using range-free approaches is not possible in dense networks, because connectivity

data carry little information about the node positions.

To overcome the limitation of range-free schemes in densely deployed networks, one can “artifi-

cially” reduce the connectivity by setting a threshold and considering neighbors only those pairs of nodes

whose average RSS exceeds the threshold. It is not clear, however, how such a threshold should be set: a

value that is too low might be ineffective in reducing the connectivity, while a value that is too high might

cause the network to become disconnected and, again, results in large localization error.

What is the correct threshold value?Figure4.2 provides an empirical answer to this question by

reporting the average localization error for different values of the RSS threshold. The plots show that a proper
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Figure 4.2: Localization error of SOM, MDS, and DV-HOP for the network in Figure4.1a. The error is
plotted as a function of the thresholdPth used to quantize the RSS data.

threshold should be between−60dBm and−50dBm; in fact, in this range all three algorithms produce a low

error. However, the error plots in Figure4.2 are computed using knowledge of the true node positions.

Computing the localization error is possible only if the true node coordinates are known; therefore, in real-

world applications, an effective threshold value will have to be found using an alternative approach.

RF-based localization is a popular research topic, but the problem of how to convert RSS measure-

ments into connectivity data has not been thoroughly investigated. The solutions proposed are mostly based

on heuristic approaches. For example, the already mentioned centroid scheme [30] selects the neighbors

based on the packet error rate. Other authors have proposed a scheme where the neighbors are determined

by sorting the RSS values [99]. The following two sections use a parameter estimation approach and focus

on the problem of computing an optimal threshold value when connectivity is derived from RSS measure-

ments. The optimal threshold discussed is the value that minimizes the expected estimation error on the node

positions.

4.1.2 Range-Free Localization as a Parameter Estimation Problem

The work described in this section aims at putting the choice of the connectivity model on a more rigorous

footing and define a criterion of general applicability to convert the RSS values into proximity information.

The starting point is the work of Patwari and Hero III [137], where localization is cast as a parameter esti-

mation problem, and connectivity data is obtained by comparing the average RSS values against a threshold.

After a preliminary introduction on the parameter estimation error, Section4.1.4introduces a a simple exam-

ple designed to explain the approach and obtain useful insights on connectivity based localization.
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Figure 4.3: Schematic representation of the parameter estimation approach.

4.1.3 Preliminaries on the Parameter Estimation Approach

Many problems in science and engineering require estimation of parameters that describe some of the proper-

ties of a system or a process. Figure4.3shows a schematic representation of the case where the parameterθ

has to be estimated using noisy measurementsX. Depending on the initial information available, two differ-

ent approaches can be used to define themeasurement modelthat describes the dependence ofX onθ. In the

Bayesianestimation approach,θ is assumed to be a random value and the measurement model is defined by

a conditional probability functionf(X|θ). A priori information available onθ is expressed by a probability

functionf(θ). In theFisherapproach, which will be used in the following sections,θ is a deterministic but

unknown parameter on which the probability functionf(X; θ) depends.

Knowledge of the measurement modelf(X; θ) can be used to design an estimator forθ, that is a

function that usesX to produce an estimate ofθ. The measurement models also serves to determine the

uncertainty of the estimation process through theFisher informationdefined as follows:

F (θ) = E

{[
∂

∂θ
log f(X; θ)

]2}

. (4.1)

The functionF (θ) is a measure of the amount of information thatX carries about the unknown parameter

θ [50]. If T is an estimator forθ, i.e. θ̂ = T (X), then the variance ofT is bounded by the inverse ofF :

Var{T (X)} ≥
1

F (θ)
. (4.2)

The inequality above, known as Cramér–Rao bound (CRB), sets a lower bound on the variance ofanyunbi-

ased estimator3 that uses the measurementX. Notably, the CRB is not related to any particular estimation

3If θ̂ is an estimate of the unknown parameterθ obtained using T,̂θ = T (X), then the estimatorT is unbiased ifE{θ̂} = θ.
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Radio channel
RSSZ = {z1, z2, z3, . . .}

d =?x = 0

Figure 4.4: 1D localization: the distance of node 1 from the origin has to be estimated using connectivity
information obtained by quantization of the RSS data.

technique, but it only depends on the measurement model.

In the following section, the parameter estimation approach and analysis of the Fisher information

will be used to study a simple one dimension localization scenario with a single node in a one-dimensional

space. The propagation model for the RSS signal is described in Section4.1.5, while Sections4.1.6and4.1.7

describe the quantization of the RSS values and the measurement model that relates connectivity measure-

ment to the node position. Analysis of the Fisher information will then be used to investigate how to reduce

the localization error by a proper choice of the quantization threshold.

4.1.4 Single Node Localization

Suppose two devices placed along a line as in Figure4.4. Let the unknown parameterd denote the the

position of node 1, which correspond to the the distance between the two nodes. The goal is to estimated

using connectivity information derived from RSS values. To enable localization, the two nodes exchange

radio messages and collect a set (possibly empty) of RSS values:Z = {z1, z2, z3, . . .}. Let z be the average

of the RSS value collected.

4.1.5 The log-normal shadowing model

This analysis assumes RSS measurements distributed according to thelog-normal shadowing model, a prop-

agation model that is widely used for link budget analysis in wireless communication. Adoption of this model

is supported both by theoretical analysis of the RF propagation and by measurements in indoor and outdoor

radio channels [143, 61, 23]. Another advantage of using the log-normal shadowing model is that it yields to

analytically tractable results.

In condition of log-normal shadowing, the average RSS valuez measured in dB (or dBm) is modeled

as the outcome of a normal random variableZ with the following distribution:

Z ∼ N (Pr(d), σdB) (4.3)

Pr(d) = P0 + 10np log10

(
d0

d

)

. (4.4)
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In the expression above, the termPr(d) denotes the expected value for the received power at a distanced

when the received power between two nodes at the distanced0 isP0. The parameternp is thepath loss expo-

nent, with typical values between 2 and 4 depending on the propagation environment. Finally, the standard

deviationσdB models the variability measured between node pairs with the same separation distance, but at

different locations (i.e. in different regions of the deployment area). Obstructions in the path between the

nodes and reflections of the signal due to nearby obstacles can produce significant differences in the average

received power measured by equidistant nodes. Typical values forσdB are between 3 and 12 dBm [143].

The average valuez is considered instead of the values{z1, z2, z3, . . .} because a particular reading

can be affected by large variability. Even if the nodes are static, movements of people, vehicles or other

objects in the radio channel can cause RSS fluctuations that are uncorrelated with the node distance. Aver-

aging the measured values reduces part of the signal variability and improves the localization results. On the

downside, using the average RSS values forces the system designer to implement measurement protocols that

exchange multiple messages and have a larger energy expenditure.

4.1.6 Threshold-based connectivity

According to the connectivity model discussed in Section4.1.1, two nodes are connected ifz is greater than

a fixed thresholdPth and disconnected in the other case. The connectivity between two nodes is defined by a

binary random variableC that takes the following values:

C =






0 if Z < Pth (nodes disconnected),

1 if Z ≥ Pth (nodes connected).

(4.5)

According to (4.3) and (4.5), the probability of the eventC = 1 (“nodes connected”) is the shadowed

area in Figure4.5a. The analytically expression for this probability is:

p = Pr{C = 1} = 1−G

(
Pth− Pr(d)
σdB

)

, (4.6)

whereG is the CDF of a normal random variableN (0, 1).When the expected received powerPr(d) equals

Pth, the nodes are connected with probabilityp = 0.5. This condition occurs when the distance between the

nodes equals thethreshold distancedth:

dth = d010
P0−Pth
10np . (4.7)
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Probability of the event “nodes connected” as a function ofdth (d = 5m).

Using the equation above, the probability of the event “nodes connected” can be expressed as a

function of the node distance. Combining (4.4), (4.6) and (4.7), the probabilityp can be rewritten as [137]:

p = p(d, dth) = 1−G

[

Kc log

(
d

dth

)]

, (4.8)

where the constant

Kc =
10

log 10

np

σdB
(4.9)

depends on propagation model’s parameters.

In the rest of this analysis, the problem of selecting the optimal threshold will focus on computing

the valuedth. Fixed, the propagation model’s parameter,dth can be converted into a RSS threshold value:

Pth = Pr(dth) = P0 + 10np log10

(
d0

dth

)

. (4.10)

4.1.7 Fisher Information and Cramér-Rao Bound Analysis

Thedth value that minimizes the estimation error for the nodes’ distance is found by computing the Fisher

information associated with the random variableC. The measurement model that described the dependence
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of the connectivity data on the node distance is theprobability mass function(pmf) of the random variableC:

f(c; d, dth) =






1− p(d, dth) if c = 0,

p(d, dth) if c = 1,

0 else.

(4.11)

The pmf above satisfies theregularity conditionsnecessary to compute the Fisher information and ensure the

CRB inequality [52]. In particular, the Fisher information is always defined (see below) and thesupportof

f(c; d, dth), i.e. the set of points wheref is not zero, does not depend ond. The support of the function

defined in (4.11) is the set{0, 1}.

The Fisher information for connectivity measurements (Fcon) is a function of the parametersd and

dth defined as follows:

Fcon(d, dth) = E

{[
∂

∂d
log f(c; d, dth)

]2}

=

∑

c∈{0,1}

(
∂
∂d
f(c; d, dth)

f(c; d, dth)

)2

f(c; d, dth). (4.12)

Since the inverse of the Fisher information defines the CRB, i.e. the lower bound on the estimation

variance, the goal will be to find adth value that maximizes the amount of information available from connec-

tivity measurements. To find the expression ofF as a function ofθ anddth, (4.11) and (4.12) are combined.

The resulting expression is:

Fcon(d, dth) = K
2
c Ir(d, dth)

(
1

d

)2
, (4.13)

whereIr is a term that depends on the ratio betweenθ anddth:

Ir(d, dth) =
2

π

exp
[
−K2c log(d/dth)

2
]

1− erf
[
Kc√
2
log(d/dth)

]2 . (4.14)

Figures4.6a,b show theFcon computed as a function of the threshold distancedth for different values

of the ratioσdB/np and different node distances. As shown by (4.13), the information content of the mea-

surements is inversely proportional to the square of the ratioσdB/np. Decreasing this ratio results in a sharper

probability transition and larger values of the Fisher information (see Figure4.5b and 4.6a). Intuitively,

larger values of the parameternp imply a stronger correlation between the received power and the distance
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Figure 4.6: Fisher Information as a function of the threshold distancedth: a) for nodes atd = 5m and various
value of the ratioσdB/np; b) for nodes at distanced = {2.5, 5.0, 7.5}m andσdB/np = 6/3.

between the nodes, which is a condition that causes the estimation error to decrease. In particular, thenp term

is a multiplicative factor in the expression10np log10 (d0/d) that measures the path loss between two nodes,

where the path loss is the “signal” that carries information about the node distance. On the other hand, larger

values of the parameterσdB pertain to environments where a strong shadowing noise increases the probability

of measuring large deviations of the signal from the expected values. Since shadowing effects are not related

to the node distance, their contribution should be regarded as a source of “noise” that reduces the accuracy of

the estimation process.

4.1.8 Optimal Threshold for the 1D Case

While the parameters of the shadowing models depend on the radio environment and are out of a system

designer’s control, the amount of information available can be maximized by properly choosingdth. The

plots in Figure4.6a and 4.6b show thatF always peaks whendth equalsd, and then it rapidly decreases to

zero as the difference betweendth andd increases.To reduce the estimation error, the threshold should be as

close as possible to the true node distance (which is unknown).

Threshold values with a large difference fromd will reduce the amount of information available and

result in less accurate estimates. For example, if the nodes are five meters apart and the chosen threshold

is too low (e.g. dth = 2m), the two nodes will be disconnected with probability very close to one. The

measurement carries little information about the true node distance because the nodes will almost always

appear to be disconnected, no matter what the actual value ofd is. From a localization point of view, we can
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x = 0 xB =?

Figure 4.7: Localization example with a node placed in three possible positions.

only infer that the distance between the nodes is greater than2m (d > 2m).

A similar situation occurs if the selected threshold is too large compared to the actual node distance

(e.g. dth = 8m). The optimal choice isdth = 5m, which corresponds to nodes connected with probability

p = 0.5. Also note that if the internode distance is increased, the optimal threshold is still achieved by

settingdth = d, but the information obtained from connectivity measurements decreases with the square of

the distance between the two nodes (see Figure4.6b). In other words, distance estimates for nearby nodes

will be more accurate than distance estimates for nodes that are far from each other.

Example: Effect of Threshold Selection

An incorrect threshold selection will reduce the amount of Fisher information, increasing the error of a con-

nectivity based scheme. To understand the effect of different thresholds, consider the following problem:

Assume a node that can occupy three positions A, B, C at a distance3, 5, and7m, respectively from a refer-

ence node (see Figure4.7). The goal is to compute the true node position using connectivity measurements.

Three quantization thresholds are available: low, medium and high with valuesPL, PM , andPH . Which

threshold will work better?

Assume B to be the true, but unknown node position. Figure4.8 shows the distribution of the

RSS values that would be measured for the node at different positions. Letpa, pb andpc be the probability

of measuring the node as connected. If the low threshold is used (i.e.Pth = PL), it will be impossible to

determine the position occupied by the node because all the three cases will produce connected measurements
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Figure 4.8: Distribution of the RSS values for a node at positions A, B, C, and three possible thresholds.
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with probability close to one (pa ≈ 1, pb ≈ 1, pc ≈ 1). Similarly, using the high threshold will result in the

same measurement (nodes disconnected) with probabilities close to one for all the three cases. Given the

ambiguity in the measurements, the node could be placed either at A or C without changing the connectivity

measurement. NeitherPL norPH allows a range-free scheme to determine the correct position.

The best threshold selection isPth = PM , which yields probabilitiespa ≈ 1, pb = 0.5, andpc ≈ 0.

Since this threshold maximizes the probability to obtain different measurements for nodes at different posi-

tions, the expected localization error is lower than the error in the previous cases.

4.2 Optimal Threshold Selection in Collaborative Localization: The

Optimal Connectivity (OC) Value

In general, a localization scheme is used to compute the positions of several nodes placed in 2D or 3D spaces.

This scenario requirescollaborative localizationsolutions (see Section1.2). Even if a node is not in the radio

range of any anchors, the proximity of other nodes (all placed at unknown locations) provide information to

locate the node. This approach is also known asmulti-hop localizationbecause it supports localization of

nodes placed severalhopsaway from the anchors.

4.2.1 CRB Analysis

Consider a network withn nodes at unknown locations andm anchors. Similarly to the previous case, nodes

collect RSS measurements and obtain connectivity valuescij by comparing the average received powerPij

against a thresholdPth. Let C be the set of all the random variables associated with the measurements:

C = {Cij : Cij ∈ {0, 1}, 1 ≤ i, j ≤ n+m}. (4.15)

The connectivity measurements are used to compute then unknown node positions. The unknown

coordinates can be arranged in a vectorθ with the following structure:

θ =






[θx,θy] if 2D localization,

[θx,θy,θz] if 3D localization,

(4.16)

where the vectorsθx,θy andθz contain the unknown coordinates:θx = [x1, . . . , xn],θy = [y1, . . . , yn] and
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θz = [z1, . . . , zn]. Similar to the 1D case, analysis of the Fisher information and the CRB will be used to

determine a threshold that minimizes the estimation error forθ.

In the case of collaborative localization, the measurement model is thejoint probability function

f(C;θ, dth) = f(c11, c12, c13, . . . ;θ, dth), (4.17)

which relates the connectivity measurements to the node positions defined byθ and the threshold distance

dth. Assuming independent RSS measurements, the joint probability (4.17) can be written as:

f(C;θ, dth) =

n+m∏

i,j=1

f(cij ;vi,vj , dth), (4.18)

wherevi andvj are the vectors with the coordinates of nodesi andj; vi = [xi, yi]t or vi = [xi, yi, zi]t de-

pending on the dimensionality of the deployment space. Each pmf in (4.18) is similar to (4.11). In particular,

two nodesi andj are connected with the following probability

pij = Pr{Cij = 1} = 1−G

[

Kc log

(
dij

dth

)]

, (4.19)

wheredij =
√
(vi − vj)t(vi − vj) is the Euclidean distance between the nodes. All the other symbols have

the same meaning as in Section4.1.

In the multi-parameter case, the information is measured by theFisher Information Matrix(FIM)

with the following elements

[F (θ)]ij = E

{
∂

∂θi
log f(C;θ, dth)

∂

∂θj
log f(C;θ, dth)

}

. (4.20)

The FIM has(2n× 2n) elements for nodes placed in 2D spaces, and(3n× 3n) elements when localization

computes 3D coordinates. Given the structure of the parameter vector defined in (4.16), the FIM is partitioned

in sub-matricesFxx,Fxy, ∙ ∙ ∙ ,Fzz with n× n elements each:

F =











Fxx Fxy

Ftxy Fyy





 if 2D localization











Fxx Fxy Fxz

Ftxy Fyy Fyz

Ftxy Ftyz Fzz











if 3D localization.

(4.21)
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More details on how to compute the FIM for the 2D case are given by Patwari and Hero III [137].

For the following analysis, it suffices to note that each sub matrix has elements similar to (4.13). For example,

the elements of the sub-matrixFxx are:

[fxx]ij =






−K2c ∙ Ir(dij , dth)(xi − xj)2/d4ij (i 6= j)

K2c ∙
∑n+m
k=1 Ir(dik, dth)(xi − xk)2/d4ik (i = j)

(4.22)

The sub-matricesFyy andFxy have a similar structure, but the terms(xi − xj)2 are replaced by

(yi − yj)2 in Fyy, and by(xi − xj)(yi − yj) in Fxy. Similarly, the terms in the sub-matricesFxz,Fyz and

Fzz are:(xi − xj)(zi − zj), (yi − yj)(zi − zi) and(zi − zj)2, respectively.

Anchor information contributes to the diagonal terms of each submatrix. At least three anchors are

needed for localization in 2D, while four non-collinear anchor nodes are necessary for localization in 3D.

Failure to include sufficient anchor information will cause the FIM to be rank deficient [117]. In this case,

analysis of the CRB is possible using the Moore-Penrose pseudoinverse of the FIM [34]. The following

analysis assume that the FIM is always invertible.

The inverse of the FIM bounds the covariance matrix of any unbiased estimator forθ that uses

observation from the set of random variablesC:

Cov{T (C)} ≥
1

F
. (4.23)

The diagonal elements ofF−1 are the lower bound for the variance on the node coordinatesxi, yi andzi:

σ2xi = [F
−1]i,i, σ2yi = [F

−1]i+N,i+N , andσ2zi = [F
−1]i+2N,i+2N . The variance on the position of each

sensor location is obtained by summation of the variance of the single coordinates:

σ2i =






σ2ix + σ
2
iy if 2D localization,

σ2ix + σ
2
iy + σ

2
iz if 3D localization.

(4.24)

If the same topology has to be localized in different environments (different realization of the random vari-

ablesPij ’s), then the terms (4.24) are a lower bound for the RMS error on the position of each node. Assum-

ing thatv̂(1)i , ∙ ∙ ∙ , v̂
(k)
i areK estimates for the position of nodei, then:

RMS(i) =

√√
√
√ 1
K

K∑

i=1

(v̂
(i)
i − vi)

t(v̂
(i)
i − vi) ≥ σi. (4.25)
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Notes on the Measurement Model

The model in this section assumes independent measurements between different pairs of nodes, which is a

simplification of the reality. Shadowing of the RF signal is caused by static obstructions in the path between

two nodes. Therefore, if two pairs of nodes share a large portion of the same physical path, it is reasonable to

expect some correlation between the measurements taken over these two links. Correlation models describing

shadowing across different links have been proposed in the literature (e.g. [63, 81, 62]), and, more recently,

Patwari and Agrawal have studies the effects of correlated shadowing on the localization bounds [134]. The

authors have shown that when shadow fading correlations are taken into account, the standard deviation

bound measured by the CRB decreases of a few percentage points (between 2.4% and 4.5% in the example

analyzed in their work). This evidence suggests that a localization scheme could improve its performance

by taking into account the correlation existing between different measurements. However, since most of the

available localization schemes are not designed to exploit this information, the assumption of independent

measurements is reasonable to model the localization error achievable by range-free localization.

The measurement model in this section also assumes thateverynode makes measurements withevery

othernode in the network. In practice, it may happen that two nodes are too far from each other to exchange

messages and collect RSS information. In absence of external interferences, this situation occurs when the

RF signal reaches the recipient with a power that is below the transceiver’s sensitivityPs.

The sensitivityPs can be regarded as an implicit threshold set by the hardware. Since the probability

of receiving messages with RSS lower thanPs is low, the threshold selection problem is meaningful only

for valuesPth > Ps. When nodes are unable to exchange radio messages, their RSS is lower thanPs and,

consequently, lower thanPth. It follows that even pairs of nodes that are out of their radio range produce valid

connectivity measurements. According to the discussion in this section and the model in Section4.1.6, these

nodes are always associated with the event “nodes disconnected”.

4.2.2 The Optimal Connectivity (OC) Value

The lower limit on the variance of the node positions can be found by computing the inverse of the FIM. Since

the Fisher information depends on the choice of the threshold distancedth, the values (4.24) will also depend

on dth. The optimal threshold is chosen as the value that minimizes the average of the standard deviation of
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the node positions:

d∗th = argmin
dth

CRBconn(dth) (4.26)

CRBconn(dth) =
1

n

n∑

i=1

σi, (4.27)

where the valuesσi depends ondth as shown in the previous section. Note that the optimal valuesd∗th can

always be converted into a thresholdP ∗th to be used for quantization of the RSS values.

From a theoretical point of view, thed∗th value minimizes the variance of the estimation error. In

practice, while it is not necessary that every range-free scheme will perform close to the CRB, it is reasonable

to expect that the knowledge ofd∗th will be useful in avoiding the large localization errors caused by an

improper threshold selection. To validate this assumption, two localization examples are considered. The

DV-HOP [127], MDS [154], and the SOM schemes are used to localize two networks with nodes deployed

in a 2D and a 3D space (see Figures4.9a and4.9c). The node positions were generated using the same noisy

grid model described in Section3.3.1.

Figures4.9b and4.9d show the localization errors averaged over 20 repetitions with different real-

ization of the RSS values. The results support the choice of a quantization level based on (4.26): The three

schemes achieve different localization errors, but in all of the cases, the minimum error is reached when the

power thresholdPth is close to theP ∗th value that minimizes the CRB.

Optimal Connectivity

When aPth value is used to quantize the RSS values, each node will be connected to a sub-set of its neighbors.

Therefore, the effect of RSS quantization can be summarized by considering the resultingnetwork connec-

tivity, i.e. the average number of neighbors per node. In some cases, expressing the results as a function of

the connectivity provides a more homogeneous comparison between different deployments. In fact, different

from dth andPth, connectivity does not depend on the physical extension of the deployment area and the

magnitude of the RSS values measured by the transceivers.

When the results are expressed as a function of the network connectivity, the optimal thresholds,d∗th

orP ∗th, correspond to anOptimal Connectivity (OC) value that minimizes the CRB (see Figure4.10). From

a system’s designer point of view, knowing theOC value is important for two reasons:

1. At run-time, if the connectivity of the network to localize is too high, the localization error can be

reduced by setting a RSS threshold that ensures an average connectivity equal toOC. According to the
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Figure 4.9: CRB and average localization error for localization in 2D and 3D spaces using three range-
free schemes.NOTE: the CRB is compared to the average error only to illustrate the relation between its
minimum and the error of the three schemes. Meaningful comparison between the absolute values should use
the RMS localization error.

CRB analysis, this choice minimizes the localization error.

2. At design time, the optimal connectivity can be used to guide the deployment of networks suitable for

localization using range-free schemes. This design approach will be useful when using transceivers that

do not support RSS readings. For example, the Bluetooth standard treats the RSS as an optional value

whose purpose is only to define if the received power is within theGolden Receive Power Range[1].

Therefore, while not every Bluetooth implementation will accurately report RSS measurements suitable

for quantization according to (4.5), the localization error can be still controlled by deploying networks

with an average connectivity approximately equal toOC. A similar approach can be used when deploy-

ing networks that infer proximity constraints using RFID’s.
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Qualitative Analysis of the CRB for Range-Free localization

The existence of an optimal connectivity value can be explained intuitively by observing the convex shape of

CRBconn. Figure4.10shows that the CRBconn increases when the network connectivity approaches values at

the extremes of the range considered, i.e. the network connectivity is either very low or very high. Connec-

tivity measurements are equivalent to knowledge of the neighbor set of each node. In the extreme case of a

network with connectivity equal to zero, all the neighbor sets will be empty. In a fully connected network,

all the neighbor sets will contain every node. In both cases, localization will not produce meaningful results

because when all the nodes have the same neighbor sets, no information is available to discriminate their

positions. Intuitively, between these two extreme values, there must be a connectivity value that minimizes

the error.

The large error for extreme connectivity values can also be explained by analyzing theFcon(d, dth)

term derived for 1D localization. Only pairs of nodes with distance comparable todth contribute significant

Fcon values. Whendth is extremely small or extremely large, as in the cases discussed above, the total amount

of information will be small because no pairs of nodes will have a distance similar todth.

For intermediate connectivity values, the choice ofdth determines which measurements are empha-

sized in the estimation process. Figure4.11shows the Fisher information available to estimate the position of

a node in the center of the network. The nodes are plotted against a background that shows theFcon(d, dth) at

different distances and for two threshold values corresponding todth = 15m anddth = 30m. Comparison of

the plots indicates thatthe choice ofdth determines a tradeoff between obtaining high-quality measurements

from a few nearby nodes, or obtaining less valuable data for a larger number of nodes that are farther away.
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Figure 4.11: Effect of choosing two different threshold values. The background color indicates the Fisher
InformationFcon(d, dth) at different distances from the node in the center. Darker colors correspond to an
higher information content. Increasingdth increases the number of nodes whose distance is similar todth, but
sinceFcon∝ 1/d2, these nodes contribute individually less information.

Therefore, the optimal connectivity is achieved by finding thedth values that ensures the optimal trade-off

between the information contribution of nodes at different distances.

Discussion

The qualitative analysis based on the results derived for the 1D case explains the existence of theOC value

and the large errors for extreme connectivity values. While this analysis provides intuitive results, it should

be noted that the CRB depends both on the distance and the geometrical configuration of the network nodes.

A node having mostly collinear neighbors will have a large error even if the measurements have low noise. In

cases similar to this one, performance degradation due to poor node placement is measured by theGeometric

Dilution of Precision(GDOP) [48], and analysis of the error requires computing the CRB with all the network

coordinates. However, when nodes have an (approximately) uniform distribution, the properties of the CRB

can be understood using a qualitative analysis based on the results presented in Section4.1.7. This is also the

approach used to study some properties of theOC value in the following section.

4.2.3 Properties of the OC Value.

This section investigates how theOC values vary as the original network topology is transformed or the

parameters of the propagation model change. The goal is to find an approximateOC value that can be

computed without using the CRB. Besides the computational burden incurred in computing the inverse of a

potentially large FIM matrix, the CRB analysis requires knowledge of the propagation model’s parameters,
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and, above all, the unknown node positions. As a result, a system designer trying to improve the performance

of a connectivity-based scheme will not be able to compute the CRB to decide the optimal threshold.

In previous work, the CRB has been presented for localization using estimates of the inter-node

distances. In that context, it was shown that the CRB is invariant under global translation, rotation or reflection

of the network [34]. Except for the termsIr(∙, ∙), the FIMs for distance and connectivity measurements have

the same structure; therefore the same properties hold for connectivity-based localization. The next section

analyzes the effect of various application parameters on theOC value. The parameters considered are: 1) the

number of network nodes, 2) the ratioσdB/np, 3) the scaling factor for the node coordinates, and 4) the number

of anchor nodes.

Number of Network Nodes

Figure4.12a shows thatOC increases with increasing values of the network size. To understand the effect of

different number of nodes, consider the information available to estimate the position of a generic node. For

simplicity, this analysis will consider a node in the center of the network similar to the case in Figure4.11.

Assuming independent RSS measurements, the available information is given by summation of the nodes’

contribution at different distances:

Ftot(dth) =
∑

i

F (i)con(di, dth) =
∑

i

K2c
d2i
Ir(di, dth), (4.28)
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wheredi is the distance of theith neighbors. Again, this simplification does not account for geometrical

configurations of nodes that could result in a large error. However, studyingFtot(dth) does provide intuitive

insights on the parameters that affect theOC value.

The optimal thresholdd∗th is the value that maximizes the available information. Since the analysis in

previous sections has shown that theF (i)con(di, dth) terms are non-negative, and that their value reduces to zero

whend� dth or d� dth, the optimal threshold is achieved in correspondence of a zero of the derivative:

∂Ftot

∂dth
(d∗th) =

∑

i

∂F
(i)
con

∂dth
(di, d

∗
th) = 0. (4.29)

Differentiation of the termsIr’s in (4.28) yields a complicated expression, but the results can be

simplified by considering an approximated form forIr (see Figure4.12b):

Ĩr(d, dth) ≈
2

π
exp

(

−
log (d/dth)

2

Ka(σdB/np)2

)

, (4.30)

whereKa ≈ 0.13 is a constant that was numerically determined using least square fitting. The intuition

for using the above approximation is that theIr term closely resembles a Gaussian kernel when its value

are plotted on a logarithmic scale as a function of the ratioσdB/np. This property can be observed later in

Figure4.23a at page83 in this Chapter. When the terms̃Ir are used in place ofIr, the terms in (4.29) have a

more tractable expression:

∂F
(i)
con

∂dth
(di, dth) =

2K2c
0.13(σdB/np)2

1

dthd
2
i

Ĩr(di, dth) log(
di

dth
). (4.31)

Note that the sign of each derivative only depends on how each distancedi compares against the thresholddth:

sign

(
∂F
(i)
con

∂dth
(di, dth)

)

= sign log

(
di

dth

)

=






−1 if di < dth

0 if di = dth

+1 if di > dth.

(4.32)

This result concords with the intuitive notion of the optimal threshold built so far. If all the neighbors

are at distances less thandth, the derivative ofFtot will be negative (see Figure4.13a). TheFtot value can

be increased by reducingdth, i.e. moving it closer to the neighbors. If all the neighbors are at distances

greater than the threshold, the derivative ofFtot will be positive. To obtain more informationdth needs to be

increased.
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(a) All the neighbors are at distance less than the thresholddth. The derivative is negative, i.e. the total
amount of Fisher information will grow if the threshold is decreased.
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(b) All the neighbors are at distance greater than the thresholddth. The derivative is positive, i.e. the total
amount of Fisher information will grow if the threshold is increased.
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Figure 4.13: Derivative of the Fisher Information in two cases: a) all the neighbors of the reference node are
at distancesdi < dth: to increase the Fisher informationdth needs to be decreased; b) all the neighbors are at
distancesdi > dth: to increase the Fisher informationdth needs to be increased.

Consider now a network in which the threshold selected is optimal, i.e∂Ftot/∂dth = 0. If nodes are

added at distance greater thandth (i.e. without increasing the current connectivity level), the contribution of

the new units will cause the derivative to become positive, thus violating the condition of optimality. To bring

the derivative to zero, some nodes at distance less thandth also need to be introduced, causing the optimal

connectivity to increase. In conclusion, as shown in Figure4.12a, theOC value will increase for increasing

values of the network size.

Propagation Model ParametersσdB/np

Figure4.14shows theOC values computed for 64 node sample topology with differentσdB/np values. There

is no noticeable correlation between the noise in the RSS measurements and the position of theOC values.

Again, analyzing of the derivative terms computed using the approximate functionĨr(di, dth) provides some

insights on this property.

As discussed in the previous section, in condition of optimal connectivity, the negative contribution

of the∂F (i)con/∂dth terms fordi < dth must be balanced by the positive contribution of the terms withdi > dth.

Consider a constantp > 1, and nodes placed at distanced1 = dth/p andd2 = dth p. By replacing these
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functionFtot(dth) computed for a node in the center of a 64 node topology.

values in (4.31), it can be seen that the following equation holds:

∂F
(i)
con

∂dth

(
dth

p
, dth

)

= −p4
∂F
(i)
con

∂dth
(p dth, dth). (4.33)

For example, ifp = 2 the presence of a node at distanced1 = dth/2 can be balanced by placing24 = 16

nodes at distanced2 = 2dth. The contribution∂F (i)con/∂dth of a node at distanced1 = dth/3 can be balanced

by placing34 = 81 nodes at distanced2 = 3 dth and so on. Note that (4.33) holds for any value of the

ratio σdB/np; therefore if nodes were placed according the rule above, theOC would be exactly the same

independently fromσdB/np.

In typical WSN deployments, it is unlikely that the node distances will follow the distribution de-

scribed. Depending on the value of the ratiod/dth, alteringσdB/np will cause some of the terms∂F (i)con/∂dth

to grow more than others, possibly causing∂Ftot/∂dth to become different than zero. However, given the

symmetry4 of the termsĨr around the valued = dth, variations ofσdB/np in the typical range measured in

wireless applications seems not to alter significantly the position of theOC value. Figure4.14b provides

further support to this evidence by reporting theFtot(dth) values for a node in the center of a 64 node random

deployment. Different values of the ratioσdB/np do not significantly alter the position of theFtot maxima.

4Symmetry should be intended in the sense thatĨR(dth/p, dth) = Ĩr(dth p, dth).
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Figure 4.15: Optimal Connectivity: a) for different scaling factors; b) for increasing number of anchors.

Coordinate Scaling

TheOC value does not change when the network coordinates are scaled by a factorS. This property follows

from the equations that describes the Fisher information for connectivity measurements. Consider the term

Fcon discussed in Section4.1.7, and assume that all the node distances are multiplied by a factorS. Also

assume thatdth is scaled by the same factor, so the network connectivity remains constant. Under these

conditions, theFcon term will be scaled by a factorS−2:

Fcon(Sd, Sdth) = S
−2Fcon(d, dth). (4.34)

When considering the multi-parameter case, scaling the network coordinates is equivalent to multiply the

FIM matrix by a constant constant factorS−2. As shown in Figure4.15a, the position of the minima of the

CRBconn will not change.

Number of Anchor Nodes

Results of extensive simulations also show that increasing the number of anchor nodes cause the the CRBconn

to decrease, but without significantly affecting theOC position. As discussed in Section4.2, anchor informa-

tion contributes to the diagonal elements of the FIM. While a larger number of anchors will lower the error,

there is no indication that this modification will alter theOC values. Figure4.15b shows the CRBconn for a

sample topology with increasing number of anchors.
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Figure 4.16: Simulation results: Optimal Connectivity for: a) 2D networks; b) 3D networks.

4.2.4 Approximation of the Optimal Connectivity Value

Previous sections have identified the network size as the only application parameter that sensibly affects the

OC value. To model the dependence ofOC on the number of nodes, the CRBconn has been computed for

a large number of simulated topologies with nodes placed in 2D and 3D spaces. Each case included about

500 random networks with a number of nodes between 20 and 400. The deployment areas were fixed: nodes

were placed inside a square region50m× 50m for 2D networks, and in cube with side measuring50m for

3D networks. Four and eight nodes in the corner of the network were used as anchors for localization in 2D

and 3D deployments respectively. For each network the parameters of the propagation model were uniformly

sampled in the following intervals:np ∈ [2, 4] andσdB ∈ [3, 9] dBm.

Figures4.16a,b show the simulation results. As expected, theOC value increases with increasing

values of the network connectivity, but there is a noticeable difference in how the value grows in the two

cases. An analysis of the derivative∂Ftot/∂dth similar to the one in Section4.2.3can help in understanding

the differences between 2D and 3D networks. Again, the proposed analysis will consider a single node placed

in the center of the network.

Assume a 2D network deployed in a circular regionA = πR2 with n nodes distributed according to

a two-dimensional Poisson point process with densityλ (see Figure4.17). Assume also thatc is the optimal

connectivity value (i.e.c = OC) anddth is the threshold value that realizes it. According to the hypothesis

on the node distribution, theR anddth and are related to the network size and connectivity by the following
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Figure 4.17: The network connectivity is increased by adding a node at distanced1 = dth/2. To maintain
the optimality of the thresholddth a number of nodes on the perimeter of the network need to be added.

equations:

R =

√
n

λπ
, (4.35)

dth =

√
c

λ π
.

(2D networks)
(4.36)

To understand how the optimal connectivity and network size are related, consider increasing the connectivity

by adding one device at distancedth/2. According to the analysis in Section4.2.3, the optimal connectivity

is achieved when∂Ftot/∂dth = 0; since adding a node at distance lower thatdth will cause the derivative to

become negative, additional nodes at distance greater thandth need to be added to maintain the optimality

of dth. For simplicity, it can be assumed that the new nodes are added at a distanced = R. Adding devices

at distanced < R would affect the network density and it would also complicate the analysis because some

devices would fall inside the circle of radiusdth, thus altering the connectivity. The number of nodes to

be added is found by evaluating the terms∂F (i)con/∂dth for nodes at distanced1 = dth/2 andd2 = R. The

contribution on the derivative for a node at distanced1 is

DF1 =
∂F
(i)
con

∂dth
(d1, dth) =

2K2c
dth

1

d21
Ĩr(d1, dth) log(

d1

dth
). (4.37)

Note that the expression above has been simplified by choosing a value of the ratioσdB/np = 1/
√
0.13 =

2.77dBm, so that the denominator inside the exponential in theĨr term is about one and can be omitted. The

value for a node at distanced2 = R is equal to:

DF2 =
∂F
(i)
con

∂dth
(d2, dth) =

2K2c
dth

1

d22
Ĩr(d2, dth) log(

d2

dth
). (4.38)
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Figure 4.18: Trend of the theoretical optimal connectivity computed using an iterative approximation.

The numbernc of new nodes that need to be added at distanced2 = Rmust balance the contribution

of the node atd = dth/2:

DF1 = −ncDF2 (4.39)

Substituting (4.37) and (4.38) into (4.39) yields:

nc = −
DF1
DF2

= 4
n

c

exp
(
− log2 2

)

exp
(
− log2

(√
n
c

))
log(2)

log
(√

n
c

) (4.40)

= 8 log (2)
n

c

exp
(
1
4 log

2
(
n
c

)
− log2(2)

)

log
(
n
c

) .

The above expression computes the number of nodesnc that need to be added to support an optimal

connectivityOC = c+1. It follows thatc+1 will be the optimal connectivity for a network withn+nc+1

nodes. Using(c + 1) and(n + nc + 1) in place ofc andn and repeating the same arguments, the network

size values can be computed for increasing connectivity levels. This iterative scheme is described by the pair

of equations:

ci+1 = ci + 1 (4.42)

ni+1 = ni + 8 log (2)
n

c

exp
(
1
4 log

2
(
n
c

)
− log2(2)

)

log
(
n
c

) + 1 (4.43)

The bottom plot in Figure4.18shows the pairs(ni, ci) with i = 1, 2, 3, . . . computed usingc0 =

9, n0 = 44 as a starting point (this values were determined by computing the CRB). The analysis in the 3D

case in analogous, but the dependence ofdth andR on the current connectivity levelci and network sizeni
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is:

R =
3

√
3

4

ni

λπ
, (4.44)

dth =
3

√
3

4

ci

λπ
.

(3D networks)
(4.45)

Taking into account the relations above, the number of nodes necessary to maintain an optimal thresh-

old dth is:

nc = −
DF1
DF2

= 12 log(2)
(n
c

) 2
3 exp

(
1
9 log

2
(
n
c

)
− log2(2)

)

log
(
n
c

) .(3D networks) (4.46)

The pairs(ci, ni) are also plotted in Figure4.18using usingc0 = 8, n0 = 38 as initial starting point.

The two lines show a close similitude with theOC values experimentally computed in Figure4.16. The main

difference between the two cases is that in a 2D network, the minimum distance at which the nodes can be

added is proportional to
√
n, while in the 3D case is proportional to3

√
n, wheren is the number of nodes. It

follows that a lower number of nodes is needed to support an increased connectivity in the 3D case. In other

words, if the same number of nodes is added to the perimeter of a network, the optimal connectivity will grow

faster for the 3D case.

Having explained the differences between the two cases, theOC value in Figure4.16can be approx-

imated using simple functions. TheOC values grows approximately as
√
n in the 2D case, while there is

almost linear dependence between number of nodes andOC in the 3D case. The functions used for interpo-

lation were empirically found and their coefficients were determined using least square fitting:

ÕC(N) =






−3.8290 + 2.3922
√
n if 2D localization

3.7055 + 0.2684n if 3D localization

(4.47)

Figure4.19shows theOC values together with the interpolation functions in the two cases.

4.2.5 Test Cases

Equation (4.47) implements a simple rule to determine what connectivity should be set when localizing a 2D

or 3D network with a range-free scheme. Consider again the localization example discussed in Section4.1.1.

Equation (4.47) evaluated for a 2D network with 44 nodes indicates an optimal connectivity value equal to

12.04. For the network considered, this connectivity is achieved whenPth = −54.22dBm. In Figure4.20a,

the optimal threshold (the vertical dashed line) is plotted together with the error of the DV-HOP, MDS and
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Figure 4.19: Using interpolation functions to approximate theOC values.

SOM algorithms. The plot also reports the CRB computed using the estimated values for the propagation

model’s parameters (np = 1.7, σdB = 3.91dBm). The connectivity value given by (4.47) is close to the

minimum of the CRB and close to the absolute minima of the MDS and SOM errors, thus validating the

utility of the approximation found.

The second case study uses the RSS data from a 38 node network deployed in a 3D space [109]. The

data is freely available on the ENALAB web site5. The optimal connectivity value found using (4.47) is 13.9,

which for this network is achieved by setting a thresholdPth = −45dBm. The error of the three localization

algorithms for this network is reported in Figure4.20b. Again, the estimated threshold results in an error that

is close to the absolute minimum error for the three localization schemes.
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E
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]

Figure 4.20: a) Localization error for the 44-node 2D network in [136]; b) localization error for the 38 node
3D network and in [109].

5http://www.eng.yale.edu/enalab/XYZ/data_set_1.htm
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4.3 Comparison with the RSS-Ranging Approach

Previous sections have analyzed the proximity-based approach and the problem of selecting an optimal

threshold value when connectivity data are obtained from RSS measurements. Alternatively, range-based

localization can use the raw RSS values to estimate the inter-node distances (see Section2.3.1). Similarly to

localization based on radio connectivity, RSS ranging schemes are popular because no additional hardware

is required on the nodes to be localized.

Since both the radio connectivity and the RSS-ranging approach are based on received signal strength

values, a question arises.Should the RSS data be used for range estimates, or should they be converted into

connectivity information? Which approach works better?As mentioned in the introduction, this problem has

not been investigated in the literature.

In the next sections, the same parameter estimation approach of Sections4.1 and 4.2 is used to

compare the localization error of both range-free and range-based localization. The goal is to provide a

practical rule to help system designers to identify the conditions under which an approach works better than

the other. Similarly to the range-free case, the simple localization scenario presented in Section4.1.4will

serve as a starting point for the analysis.

4.3.1 1D Node Range-Based Localization

Consider again the example in in Figure4.4; in this case the distance between the two nodes has to be

estimated using the unquantized RSS values. The measurement used in the estimation process is the value

z computed by averaging the RSS values collected between the two nodes. As discussed in Section4.1.5,

the valuez can be modeled as the outcome of a random variableZ with normal distribution (log-normal

shadowing model). Under this assumption, an estimate of the distance can be computed using theMaximum

Likelihood Estimator(MLE):

d̂ML = d010
(P0−z)/10np. (4.48)

If the path loss exponentnp is known, the MLE provides a simple solution to convert RSS values into

range estimates. Additionally, using (4.48) the estimation error can also be quantified. If the measurement is

z = Pr(d) + δ, whereδ is a sample from the random variableΔ ∼ N (0, σdB), then the error is:

e = d̂ML − d = d
(
10
− δ
10np − 1

)
. (4.49)
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In absence of shadowing effects (δ = 0), the MLE produces the correct estimates (i.e.e = 0). When

δ 6= 0, the error is proportional to the distance between the nodes; therefore, range estimates for nodes with

a large separation distance are less accurate than range estimates for nodes that are close to each other.

Although the MLE for the node distance is readily available, the goal of this section is to compare

the RSS ranging and the radio connectivity approaches on a more general basis. Again, analysis of the

Fisher information will serve to derive results of general applicability and identify under which conditions

the minimum expected error for one approach is lower than the other. As a result, the comparison will make

it possible to select the localization technique capable of the lowest error.

In condition of log-normal shadowing model, themeasurement modelthat relates the RSS value to

nodes’ distance is a normal distribution with pdf

fZ(z; d) =
1

σdB

√
2π
exp

(

−
(z − Pr(d))2

2σ2dB

)

, (4.50)

wherePr(d) is the term defined by (4.4). The Fisher information is defined as

Frss(d) = E

{[
∂

∂d
log fZ(z; d)

]2}

. (4.51)

For the two nodes in Figure4.4, substituting (4.50) into (4.51) yields

Frss(d) = K
2
c
1

d2
, (4.52)

where the constantKc as the same value of (4.9). Figure4.21showsFrssas a function ofd for different values

of np andσdB. The plots describe what was already seen in (4.49): The amount of information available to

estimated decreases for increasing values of the distance and increasing values of the ratioσdB/np.

Recall that the expression for the Fisher information computed for connectivity measurements is

Fcon(d, dth) = K
2
c Ir(d, dth)

1

d2
.

This equation is similar to (4.52), but it contains the extra termIr(∙, ∙) that depends on the ratio between the

actual node distance and the threshold. Since the maximum value for the termIr is achieved whendth = d,

Fcon is approximately 37% lower thanFrss, even using the optimal threshold. In fact,Ir(d, dth) = 2/π ∼= 0.63

for dth = d.
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Figure 4.21: Fisher Information for RSS and connectivity measurements.

4.3.2 To Range Or Not To Range?

Comparison betweenFrss andFcon shows that RSS measurements always carry greater information content

than connectivity ones; however, this is only true as long as the nodes are within theradio rangeof each other.

When nodes are within each other’s radio range, they can successfully exchange radio messages and

z can be computed by averaging the values{z1, z2, z3, . . .}. The valuez can be used for range estimates

using (4.48), or it can be used to derive connectivity information using (4.5). Depending on the choice ofPth,

two nodes that are within each other’s radio range can be considered connected or disconnected.

On the other hand, when nodes are out of range the collection of RSS measurements is likely to fail.

As discussed in Section4.2.1at pag.64, when the power of the RF signal falls below the radio sensitivity,

the demodulation of the incoming radio messages is likely to generate errors. Since the MAC layer of most

transceivers is designed to silently drop packets containing errors, no RSS data will be made available to

the application layer6. In this case, a range-based approach such as the MLE will not produce any position

estimate (i.e.Frss= 0). Instead, if a connectivity scheme is used, the occurrence of nodes that are out of range

can be associated to the value “nodes disconnected"; therefore a position estimate is still possible (Fcon> 0).

The diverse nature of the measurements implies a fundamental difference between the two ap-

proaches. RSS ranging is more accurate when nodes are in the radio range of each other, but a connectivity

scheme is naturally suited to localize nodes that are unable to communicate.

6Some transceivers (e.g. TI [5] and Jennic [2]) support test modes that allow the transmission of continuous waves. The power of
these signals can be measured on the receiving unit without having to demodulate the signal; therefore RSS measurements are possible
even below the radio sensitivity. A similar approach is used in the interferometric approach [112]. However, disabling the MAC layer in
some units is likely to create interferences to nearby devices and can disrupt the functionality of the upper layer protocols (e.g. routing).
Therefore the use of these special measurement modes is less appealing to collaborative schemes where multiple devices share a confined
space.
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Figure 4.22: Top: Distribution of the RSS values for nodes at positions A, B, C, and three possible thresholds.
Bottom: the same distributions computed with a larger ratioσdB/np. Note the the probabilitypa > 0 that
results from the noise in the measurements.

4.3.3 Effect of Shadowing on Range-Free and Range-Based Localization

High values of the ratioσdB/np degrade the quality of range estimates using RSS and have a similar effect

on connectivity measurements (see Figures4.21and4.6). However, while a strong shadowing variance has

always detrimental effects on RSS range estimates, the occurrence of noisy measurements can sometime

mitigate the effect of a wrong threshold selection. Consider again the localization example described in

Section4.1.8(i.e. the example with the three nodes). Figure4.22compares the RSS distributions used in the

previous example with more noisy distributions. Note that the threshold selectionsPth = {PL, PH}, while

still non-optimal, are not as ineffective as they were in the previous case. In both cases there is a nonzero

probability to obtain a different measurement for at least one of the nodes at position A or C.

The effect of noise on connectivity-based localization can also be measured by evaluatingFcon for

different values of the ratioσdB/np. Figure4.23a showsIr(d, dth) plotted as function of the ratiod/dth for

different values of the parametersnp andσdB. Fixed the valued/dth, Ir increases with increasing noise in

the measurements. As a result, threshold selections that are ineffective for small valuesσdB/np will produce

better results whenσdB/np increases.

Figure4.23b further illustrates the effect of noisy measurements on the threshold. The plots show

the Fisher information values computed when nodes are five meters apart. The valuesFcon3, Fcon5 and

Fcon7 measure the information when using adth equal to3, 5 and7m respectively. The optimal threshold is

dth = 5m; in fact,Fcon5 is always greater thanFcon3 andFcon5. However, when the ratioσdB/np is increased

the differences between different choices become negligible.
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values computed for various threshold selection (right).

4.3.4 Network Localization

In collaborative localization, the FIM and the CRB for a RSS ranging scheme are computed using the same

approach described in Section4.2. This section compares the localization limits for the range-free and the

range-based case as a function of the network connectivity. The notations CRBrss and CRBconn indicate the

average value of the2n coordinates’ standard deviation for RSS ranging and localization based on radio

connectivity respectively.

Figure4.24shows the CRBs for the same network used in Figure4.10. This time the plot also reports

the CRBrss. Different from the connectivity case, the CRBrss decreases monotonically with the connectivity.

For RSS ranging localization, a given connectivity value, say ten, means that each node is in the radio range

of other ten nodes; hence, ten range estimates are available to compute its position. As the connectivity

increases, the number of measurements increases, causing the CRBrss to decrease.

4.4 Range-Free and Range-Based Collaborative Localization:

The Critical Connectivity (CC) Value

In addition to the OC value previously discussed, Figure4.24shows another important value: thecritical

connectivity(CC) value where the two CRB lines cross.For connectivity values belowCC, CRBconn is lower

than CRBrss, implying that connectivity-based localization is potentially more accurate than RSS ranging,

while the opposite is implied for values aboveCC. Assume a network with average node connectivityk.



84

0 10 20 30 40 50
10

15

20

25

30

35

40
CRBs for a 49 Node Network

Connectivity

R
M

S
 E

rr
 [m

]

 

 

OC

Connect. (CC)
Critical

CRBco
nn

CRBrss

Figure 4.24: CRBs for a 49 node network with four anchors on the corner of the deployment area. The
Critical Connectivity (•) and Optimal Connectivity (�) values are marked on the plot.

Comparingk againstCC determines which localization approach should be used. A range-free scheme

should be used ifk < CC, and a range-based scheme ifk ≥ CC. According to the CRB analysis, this choice

minimizes the expected localization error.

Similar to theOC analysis, the following sections study how relevant application parameters affect

theCC value. The goal is to identify possible approaches to approximate this value without having to compute

the two CRBs.

4.4.1 Properties of the Critical Connectivity

TheCC value is studied for the same parameters previously used: 1) the number of network nodes, 2) the

ratio σdB/np, 3) the scaling factor for the node coordinates, and 4) the number of anchor nodes. Since the

CC is the intersection of the two CRBs, alteration in the relative position of the two limits will cause theCC

value to change.

Number of Network Nodes

TheCC value increases with the number of nodes in the network. Assume a network with average connec-

tivity k. Assume now that the number of nodes is increased without changingk. If the deployment area is

fixed, this is possible only if the communication range of each node and the RSS threshold are reduced. In

this new network topology, a lower CRBrss is expected because now the same number of measurements are

available from nodes that are closer7. For connectivity-based localization, the CRBconn decreases even more

noticeably than the CRBrss. In fact, for a range-free scheme the error reduces not only because nodes are

7 More in general, a proof by Patwariet al. [136] gives sufficient conditions for a decreasing CRB when new nodes are added to the
network.
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Figure 4.25: Critical Connectivity (•): a) for different network sizes; b) for increasing values of the ratio
σdB/np.

closer to each other, but also because there are more measurements available from the disconnected nodes.

Figure4.25a shows the two CRBs computed for networks with 49, 81 and 121 nodes deployed in a square

region with side equal to100m. While both CRBs decrease, the reduction is more evident for the CRBconn.

As a result, theCC value increases with the network size.

Propagation Model Parameters

TheCC value also increases when the ratioσdB/np increases. As discussed in Section4.1.7, this term de-

scribes the quality of the RSS the measurements. Increasing noise results in larger localization error; in fact,

both the CRBrss and the CRBconn increases as shown in Figure4.25b. But when using connectivity mea-

surements, parts of the losses are compensated by the termIr(∙, ∙), which was shown to increase with larger

noise level (see Section4.3.3). Since noise has a less severe impact on connectivity-based schemes, theCC

increases with the ratioσdB/np (see Figure4.25b).

Coordinate Scaling

Similar to the connectivity case, scaling the coordinates by a constant factorS has the same effect of mul-

tiplying the FIM by a factorS−2. The expression for the Fisher Information for RSS ranging measurement

is

Frss(Sd) = S
−2Frss(d). (4.53)
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Figure 4.26: Critical Connectivity: a) for different values of the scaling factor:S = {1, 2, 3}; b) for
increasing number of anchor nodes.

Since scaling the network coordinates has the same effect on the FIM elements for RSS and connectivity

measurements, the relative position of the two CRBs will not change. This implies that theCC value also

remains constant (see Figure4.26a).

Number of Anchor Nodes

Results of simulations also shown that theCC value does not sensibly changes when a larger number of

anchor nodes is used in the localization process. See Figure4.26b.

4.4.2 Critical Connectivity Approximation

Table4.1summarizes the effect of the application parameters studied in previous sections on theOC andCC

values. TheCC value depends directly on the number of nodes in the network, and the ratioσdB/np. Again, a

large number of simulated topologies is used to model the dependence of theCC value on these parameters.

Table 4.1: Effect of Parameters on CC and OC Values

Parameter Effect on CC Effect onOC

N. of Nodes YES YES

RatioσdB/np YES Negligible

Scaling Factor S NO NO

N. of Anchors Negligible Negligible
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The results are based on about 500 random generated using the same parameters described in Sec-

tion 4.2.4. Figure4.27a shows the simulation results. TheCC values are plotted against the simulation

parameters and appear to lie on a smooth surface. The values are interpolated using a function that is empiri-

cally found:

C̃C(n, r) = a0 + a1n+ a2r + a3nr +

+a4 log n+ a5 exp(−r), (4.54)

wheren is the number of nodes andr is the value ofσdB/np. The values of the coefficientai, obtained by

least squares fitting, are:a0 = −37.1022, a1 = −0.0732, a2 = 8.8506, a3 = 0.0377, a4 = 6.0667, a5 =

41.8567. The mean squared error betweeñCC(n, r) and the data points is equal to6.18, while the average
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Figure 4.28: Approximation of the critical connectivity values and for different intervals of the valuesσdB/np.



88

0
100

200
300

400

2

4

0

50

100

150

200

250

Critical Connectivity Approximation (3D)
C

C

σdB
np

Network Size
0 100 200 300 400

0

50

100

150

Nodes

C
C

Critical Connectivity (3D)

σdB/np ∈ [3.25, 3.75]

σdB/np ∈ [2.25, 2.75]

σdB/np ∈ [1.25, 1.75]

Figure 4.29: Simulation results for critical connectivity values and their approximation (3D networks).

error is equal to1.88.

Figure4.27b shows the interpolating surface (4.54) together with the data point. Figure4.28shows

theCC values for different intervals of the ratioσdB/np. The dotted lines are computed using (4.54) for r

equal to the central value of theσdB/np ranges considered. For low values ofσdB/np, theCC value stabilizes

around 15. As the ratioσdB/np increases, however, there is an higher correlation between the network size and

CC values; therefore range-based schemes are beneficial only in highly connected networks. These results

confirm the observations of other authors, who have occasionally noted that connectivity-based schemes

outperform range-based ones in conditions of low connectivity [35] or when the ranges are estimated using

noisy measurements [20, 129].

Results of simulations with network deployed in 3D spaces are similar to the 2D case. Figure4.29

shows the point and the approximation surface used to interpolate them. The values of the coefficientai,

obtained by least squares fitting, are:a0 = −20.5671, a1 = −0.1480, a2 = 1.0249, a3 = 0.1092, a4 =

8.0842, anda5 = 2.0966.

4.4.3 Test Case

Consider the 100 node network of Figure4.30with parametersnp = 3 andσdB = 8 dBm. Application of

(4.54) yields : C̃C(100, 8/3) = 20.07 (the exact value found using the two CRBs is 22). According to the

proposed analysis, a connectivity based scheme should be used for connectivity values below20.07, and a

range-based scheme when the network’s connectivity is above20.07.

To validate the choice suggested by the approximatedCC value, the node positions are computed
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Figure 4.30: 100 node network test case.

using two algorithms. The first one is the SOM-A localization scheme, which has shown to perform well

for low connectivity values. The other one is a range-based scheme that computes the MLE using gradient

descent8 [136]. As shown in Figure4.30, a posteriorianalysis of the error confirms the choice made by using

(4.54). For connectivity values lower than 20, the range-free scheme’s error is lower than the MLE’s error;

the opposite is true for connectivity above 20.

4.5 Related Work

Over the past few years, analysis of the CRB have been used by a number of authors to characterize the error

bound of localization algorithms, especially when using range measurements (angle or distances) affected

by Gaussian noise. Moses et al. [117] have derived the CRB for localization based on signals emitted by a

set of sources, and nodes can measure the Time of Arrival (ToA) or the Angle of Arrival (AoA). A study

of the CRB under various conditions of node and beacon density has been proposed by Savvides et al. [8].

Wang et al. have defined a Bayesian Bound (BB) that is the covariance of a posterior distribution computed

from the sensor observations [168]. This bound is equivalent to the CRB for measurements with Gaussian

error, but it is computationally less demanding. Analysis of the CRB has been proposed by Patwari et al. for

collaborative localization using distance estimates obtained by ToA and RSS [136], and for localization using

angle estimates [135]. Localization using connectivity information or quantized RSS levels has been studied

by Patwari and Hero III [137]. The idea to obtain connectivity data from RSS value has been also used by Li

et al. to implement aPartial Range Information(PRI) scheme that derives “sub-hop” information useful in

improving the localization accuracy [99]. This idea is somewhat similar to the one proposed in Section4.2,

8We use the output of the range-free scheme as initial position for the gradient descent.
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since theOC approach also tries to improve the localization accuracy by choosing a threshold for the RSS

values.



Chapter 5

Localization in Heterogeneous Scenarios

Using SOM

Implementing a localization service for ad hoc networks is a challenging task. Sometimes the nodes are de-

ployed in sparse topologies, while other times they are densely packed inside a building. Some environments

are relatively uncluttered, while others have obstacles that impede the node placement and strongly affect

the radio signal. To address the problem of localization in heterogeneous scenarios, the SOM schemes are

validate using new extensive simulation sets based on log-normal shadowing model.

The simulations in this chapter show that the SOM techniques is be robust to conditions of strong

shadowing of the RF signal and produces accurate results in a variety of simulated environment with nodes

places in 1D, 2D and 3D configurations. However, the SOM’s error also confirms the theoretical results

discussed in Chapter4: Range-free localization is not effective in densely-deployed networks. To avoid

this limitation, insights gained from the theoretical analysis in Section4.3 and 4.4 are used to devise an

improved version of the algorithm (SOM-R) capable of combining connectivity measurements with RSS

values. The new scheme is validated using RSS traces collected from wireless devices in three different

environments. Results show a localization error that is substantially lower than other SOM variants and

practically independent from the connectivity of the network being localized. Similar results are achieved in

networks with anisotropic layouts, which are typically harder to localize.
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5.1 Performance of the SOM based Localization under Log-Normal

Shadowing and Comparison with the CRB

The ideal radio modelused in Chapter3 provides an intuitive abstraction useful in simulation studies, but it

does not adequately capture the random nature of wireless communication. Multi-path fading due to reflec-

tion, diffraction and scattering of the RF signal causes variations in the received power and ultimately affects

the capacity of the recipient to correctly decode a radio message.

This section evaluates the performance of SOM-A, MDS and DV-HOP using a new simulation set

based on the log-normal shadowing model. The data used in the simulation are generated according to a

two-step process: 1) For each pair of nodes, the average RSS values are sampled according to the log-normal

distribution described by (4.3) and (4.4). 2) Connectivity data are obtained by binary quantization of the

RSS values (see Section4.1.6). To allow a meaningful comparison with the CRB, the simulation is repeated

fifty times, using different realizations of the random variables that model the RSS values. For each trial,

the localization results are evaluated at different connectivity levels obtained by adjusting the quantization

thresholdPth in (4.5).

The performance metric used to evaluate SOM-A, MDS and DV-HOP is the averageRoot Mean

Square(RMS) error defined as:

RMS Err=
1

n

n∑

i=1

√√
√
√ 1
K

K∑

k=1

(
xi − x̂

(k)
i

)2
+
(
yi − ŷ

(k)
i

)2
, (5.1)

whereK is the total number of repetitions (fifty in this case),n is the number of nodes (excluded the an-

chors),(xi, yi) are the true node coordinates, and(x̂(k)i , ŷ
(k)
i ) are the coordinates computed using one of the

localization algorithm in thekth trial. The RMS Error is compared against the average value of the node

positions’ standard deviation computed using the CRB.

Additionally, each simulation is repeated in different shadowing conditions, with different values of

the ratioσdB/np:

1) Low noise: σdB/np = 3/4dBm.

2) Medium noise: σdB/np = 6/3dBm.

3) High noise: σdB/np = 9/2dBm.

As discussed in the previous chapter, the ratioσdB/np describes the quality of the RSS measurements and
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Figure 5.1: a) 2D sample topology (red squares are anchor nodes); b,c,d) average RMS error achieved by
SOM-A, MDS and DV-HOP for different values of the propagation model’s parametersnp andσdB.

ultimately determines the error achievable using an RF-based localization scheme. The selectedσdB/np val-

ues model different operative conditions, and are consistent with values measured in real deployments (see

Section5.2.3).

Figure5.1 shows one of the sampled topologies used in the simulation and the localization results

together with the lower limit defined by CRB. When the noise due to shadowing effects is low (see Fig-

ure5.1b), the RSS values and the connectivity information are strongly correlated with distance. The results

are qualitatively similar to those discussed for the ideal radio model: For low connectivity values, SOM-A

outperforms the other schemes, achieving an RMS error close to the bound. For larger connectivity values,

MDS produces more accurate results with an error close to the CRB for connectivity comprised between

25 and 45. Again, the error of DV-HOP increases similarly to that of SOM, but its performance is further

removed from the theoretical bound.

When theσdB/np ratio increases (see Figures5.1c,d), the noise due to shadowing effects corrupts the

measurements and causes the localization error to increase (including the CRB). The effects are more severe
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for MDS that performs worse than the other two solutions for high noise values (see Figures5.1d). The error

generated by SOM, which is inherently a stochastic scheme, and therefore less sensitive to measurements

errors, degrades more gracefully as the noise increases.

For large connectivity values, the error plots are lower than the CRB. Increasing the threshold value

excessively causes the FIM information to become rank deficient, and some of the components of the CRB

go to infinity. In practice, the localization error of the three scheme is always finite, therefore it might be

lower than the CRB when then network connectivity approaches the network size.

5.1.1 Localization in 1D and 3D spaces

In addition to the canonical application of localization in two dimensions, the simulations also evaluate the

three schemes when nodes are placed in 1D and 3D spaces. Ad-hoc networks with linear configurations of

nodes find application in traffic monitoring along highways and perimeter control. 3D deployments are found

in asset tracking applications for large warehouse, or when instrumenting multistory buildings for ubiquitous

computing.

All the three localization algorithms can be easily modified to work in dimensions different from two.

In particular, the only modifications required by SOM are the use of weights with a different dimensionality

and a corresponding change in the sampling space. Points are sampled from a line for localization in 1D, and

from a cube for localization in 3D. In both cases, the training points for the SOM are sampled from uniform

distributions with extension computed using (3.8).

Figure5.2 shows the test topologies used and the results for medium noise (σdB/np = 6/3dBm).

The results for other noise levels are qualitatively similar to the 2D case. The only exception is the MDS

scheme, which produces a large localization error in all the 1D configurations tested. In contrast, both SOM

and DV-HOP achieve an error close to the bound for low connectivity values.

5.2 Localization in Dense Networks

Both simulation results and CRB analysis show a large localization error when the connectivity reaches values

close to the network size (see Figures5.1 and5.2). When most of the nodes are in the radio range of each

other, connectivity data are of scarce utility in determining the node positions. In particular, the extreme case

of a fully connected network is the result of an improper threshold selection, which results in a small amount

of Fisher information and large estimation errors (see Section4.2.2).
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Figure 5.2: a,c) 1D and 3D sample topologies (red squares are anchor nodes); b,d) average RMS error
achieved by SOM-A, MDS, DV-HOP for different connectivity levels and comparison with the CRB value.

When connectivity data is obtained from RSS values, any range-free scheme can be used to localize

dense networks by applying the optimal threshold value discussed in Section4.2. This approach will also

work with the SOM localization algorithm. In the test cases analyzed, it was shown that the error achieved

in correspondence of the optimal threshold is close to the absolute minimum error achieved by SOM (see

Figures4.20a and4.20b at page78).

The analysis in the previous chapter also shows that range-free algorithms are better suited to localize

sparse networks, while range-based approaches work better in dense deployments. This evidence suggests

that the localization results could be improved by designing hybrid localization schemes capable of exploiting

both connectivity and RSS measurements. In the following section, this idea is explored by proposing a new

SOM variant that exploits the two types of information during the training phase of the map.
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5.2.1 The SOM-R algorithm

The negative effects of large connectivity values on the SOM schemes are easily understood by recalling the

update rule (3.2) discussed in Section3.1. When the network is highly connected, a large number of neurons

will be within the same distance from theBMU. Therefore, the weight updates will be similar for many nodes,

and the map will not be able to accurately represent the input distribution. This problem is evident in the

motivating example of Section4.1.1, where most of the estimated positions collapse toward the center of

sampling space (see Figure4.1d at page52).

The SOM-R algorithm avoids the shortcomings of range-free localization in dense networks by using

the RSS values to redefine the hop count distancedhop. The idea is to augment the proximity information by

sorting the one-hop neighbors on the basis of their received power. In particular, the attenuation of the RF

signal between a pair of nodesi andj is measured by thepath lossPL:

PL(i, j) = P0 − Pij , (5.2)

whereP0 andPij have the same meaning defined in (4.3) and (4.4). Similarly toPij , PL is also a random

variable with normal distribution; the expected value forPL, is approximately zero for nodes whose separation

distance isd0, and it increases for nodes that are far apart. It can be assumed thatd0 is small compared to the

separation distances between the network nodes, thereforePL(i, j) ≥ 0, ∀i, j. If the network is implemented

using transceivers with a typicalsensitivityPs1, we expect the path loss to increase up to a maximum value

PL-MAX = P0 − Ps . When such value is reached, the RF power at the receiver will equalPs and a further

increment inPL will cause the communication to fail with a high probability. Based on these considerations,

the new neighborhood function used in the SOM training algorithm is:

h(PL)

cj = exp

(

−
d(PL)

hop(c, j)
2

2σ2

)

. (5.3)

In the expression above,d(PL)

hop(c, j) uses the path-loss values to measure the distance between theBMU at index

1The radio sensitivity is the minimum signal power that the transceiver is able to demodulate with high probability. For example,
transceivers compliant with the IEEE 802.15.4 should be able to ensure a Packet Error Rate (PER) less than 1% for signal with power
equal to -86dBm or above.
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c and the a generic node/neurons at indexj:

d(PL)

hop(c, j) =






PL(c, j)/PL-MAX if dhop(c, j) = 1

dhop(c, j) if dhop(c, j) 6= 1.

(5.4)

The modified hop-count distance is unchanged for nodes that are not in the radio range of theBMU

(dhop(c, j) 6= 1), but it has increased “resolution” for one-hop neighbors. Different nodes within the ra-

dio range of theBMU are treated differently depending on their path loss value. APL(c, j) value close to zero

will result in a small hop-count value (d(PL)

hop ≈ 0), which in turn will cause a strong interaction (h(PL)

cj ≈ 1)

between theBMU and nodej. On the other hand, whenPL(i, j) is close toPL-MAX , the two nodes will be treated

as regular one-hop neighbors.

As mentioned in Section3.1.1, the shape of the neighborhood function, and consequently the choice

of dhop, is not a critical factor in the SOM learning algorithm. In using thePL values as shown above, the intent

is not to accurately model the distance between nodes, but simply to provide a mechanism to differentiate

between neurons that otherwise would be at the same map distance from theBMU. Figure5.3a shows an

example of a neighborhood function based ond(PL)

hop.

The use of thed(PL)

hop in place of the regular hop distance is the major difference between SOM-R and

the other versions of the scheme. The modified neighborhood function (5.3) can be used both with SOM-V

and SOM-A, but in the rest of this work only the anchored version is evaluated. The SOM-R version is

similar to Algorithm 1 in Section3.2.3 with the exception of the new map distance. Also, experimental

results suggest that when the modified map distance is used, it is beneficial to train the map with a larger

learning factor, thereforeηmax= 0.5 is used instead thanηmax= 0.1.

The SOM-R algorithm shares some similitude with other range-free schemes where RSS values

have been used to complement connectivity information. For example, in the PRI scheme proposed by Li et

al. [99], the received signal strength is used to compute “sub-hops” by sorting the one-hop neighbors, and

Liu et al. [102] compute the node positions as intersection of concentric rings derived from the RSS. The

SOM-R scheme also shares some resemblance with the work of Nguyen et al. [124], who used RSS value

collected between the nodes to train a kernel-based classifier. However, while the classifier only detects if a

node is contained in a given region or not, the SOM technique implements a more straightforward approach

to localization that produces explicit position estimates as a consequence of the training phase of the map.
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Figure 5.3: Average RMS error achieved by SOM-A, SOM-R, MDS and DVH.

5.2.2 Simulation Results

Similarly to the previous section, the RMS error is computed over 50 localization experiments on a 64-node

network with four anchor nodes. Once again, the simulation accounts for different radio environments by

considering the three noise levels previously used. Also, in this simulation set, the valuePth is used in place

of the sensitivityPs in the termPL-MAX in (5.3). In general, if a threshold is not used and the value ofPs is

unknown, the maximum path loss value measured within the network can be used in place ofPL-MAX .

Figure5.3b,c,d show the simulation results. SOM-R produces remarkable improvements in accuracy,

especially for higher values of network connectivity. In simulations with low and medium noise, and for

connectivity equal to 60, the RMS error is respectively 85% and 65% lower than the value produced by

SOM-A. In networks with high noise (σdB/np = 9/2 dBm), the RMS’s error is about 25% lower than that of

SOM-A. Notably, SOM-R maintains the accuracy of SOM-A for sparse networks, and it produces meaningful

localization results even in fully connected networks, achieving results that are practically independent from

the network connectivity.
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In Figure 5.3, the SOM-R’s error is sometimes lower than the CRB. This is not in contradiction

with the definition of the CRB, because SOM-R uses not only connectivity constraints, but also the RSS

information. However, the use of raw RSS data in the SOM algorithm is different from other approaches that

use signal strength to estimate the inter-node distances. To produce such range estimates, for example using

the MLE (see Section4.3.1), knowledge of the propagation model parametersnp is required2, which in turns

involves collection of a large set of controlled measurements and adds to the costs of the localization service

implemented. The SOM-R scheme can localize nodes deployment in environments for which the parameters

of the propagation model are unknown.

Localization Results in Larger Networks

An additional simulation set considers networks similar to the ones in previous sections, but with a larger

number of nodes. Figure5.4a,b,c,d show the average RMS error and the CRB computed for networks with

200 nodes deployed in a square region with400m sides. The ratioσdB/np ∈ {3/4, 6/3} used in each

simulation set is reported below the error plots.

When the SOM algorithm is executed with 5000 iterations, its localization error still compare favor-

ably to that of MDS and DVH, but the values are not as close to the CRB as in the simulations reported in the

previous section (see Figures5.4a,b). The results can be improved by increasing the number of iterations. As

shown in Figures5.4c,d, training the map with 20000 samples improves the localization error and reduces

the differences with the CRB. Similar results are achieved on 400 node networks deployed in a square region

with side measuring1000m (see Figures5.4e,f). In this case, the SOM map is trained with 50000 samples

from an uniform distribution. The execution time necessary to run the MATLAB algorithm on a 2.66 GHz

desktop computer is about 17 seconds.

As previously discussed, the SOM approach allows a system designer to trade accuracy for execution

time. In large deployments, it is reasonable to assume that some of the devices will be powerful enough to

support extensive computation. In this case, the localization results can be improved by increasing the number

of iterations. Figure5.5shows the localization as a function of the number of iterations for three topologies

with 100, 200, and 400 nodes. These plots are similar to the ones in Figure3.10but consider larger networks.

In conclusion, different from other neural network techniques, there is no risk of overtraining the map when

using a large number of training samples.

2The basic MLE estimator only requires knowledge of the the parameternp (in addition toP0 andd0). To compute an unbiased
version of the same estimator, knowledge of the parameterσdB is also necessary [136].
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Figure 5.5: Average localization error computed using SOM for an increasing number of iterations.

5.2.3 Localization Using RSS Data From Real Deployments

This section extends the evaluation of SOM-R and the other SOM variants by presenting localization results

obtained from data measured in some ad-hoc networks.

Test Case 1: 44 Node Network, Medium Noise

The first test case uses the SOM-R scheme to localize the nodes in Figure5.6. This is the same network used

in the motivating example in Section4.1.1. The nodes in this network are all in the radio range of each other

and the estimated parameters for propagation model areσdB = 3.91dBm, andnp = 2.3 [136]. The ratio

σdB/np is equal to 1.7 dBm, close to the value used to simulate networks with medium noise (σdB/np = 6/3

dBm).

The SOM-R scheme is executed with 5000 samples from a uniform distribution computed using

(3.8). The localization experiment is repeated fifty times, changing the seed of the random number generator

each time. The average RMS error achieved by the SOM-R is equal to2.167m, with the best and worst lo-

calization attempts that produced an error of1.875m and2.518m respectively. Comparison of the SOM-R’s

error with previously published results shows that SOM-R achieves performance similar to those reported by

Patwari et al. [136] for a centralize MLE estimation scheme (see Figure5.6). Note that SOM-R’s results are

obtained without knowledge of the the parametersnp andσdB.

Test Case 2: 46 Node Network - High Noise

The second test case uses data from a 46 node network deployed in an indoor space measuring approximately

14m× 10m. The nodes use a 2.4 GHz transceiver and are arranged in a grid as shown in Figure5.7a. Some

grid positions are missing due to node malfunctioning at the moment of the test.
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Figure 5.6: The 44-node network with RSS measurements described by Patwari et al. [136] and published
localization result for the same network.

The RSS data were collected by exchanging 100 messages between each pair of nodes and com-

puting the average of the collected values. The deployment area, an empty office space with some metallic

fixtures, was relatively uncluttered. Despite the LOS communication between most pair of nodes, the RSS

data manifest a significant level of variability, presumably due to multi-path reflection from the metallic walls

on the perimeter of the area and due to different antenna orientation. In fact, the nodes were equipped with an

integrated antenna and were randomly oriented. Using the measured data, the propagation model parameters

were found to be equal toσdB = 8.13dBm andnp = 2.74, resulting in a ratio close to the one used to simu-

late noisy networks. In absence of previously published results, the performance of SOM-A and SOM-R are

evaluated by comparing the localization error against that of MDS and DVH. Figure5.7b shows the localiza-

tion results for different connectivity levels that were obtained by varying the thresholdPth. The results are

qualitatively similar to those obtained in simulating networks with high ratioσdB/np.

Test Case 3: 38 Node Network in a 3D Space - High Noise

The last test case is based on RSS measurements from a 38 node network deployed in an indoor 3D space

(see Figure5.7c). The data is freely available on the ENALAB web site3 and the measurements are discussed

in detail by Lymberopoulos et al. [110]. Similarly to the previous case, the authors found different antenna

orientations and multi-path to be source of significant variability in the RSS data, which exhibit a low corre-

lation with the distance. Figure5.7d shows the localization error for the four scheme considered. Again, the

error of SOM-A and SOM-R is significantly lower than the error of DV-HOP and MDS.

3http://www.eng.yale.edu/enalab/XYZ/data_set_1.htm
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5.3 Localization in Anisotropic Deployments

Anisotropic layouts result from deploying sensors in regions with obstacles (e.g. tall buildings), or when

localized node failures lead to “holes” in otherwise isotropic topologies. It is known that localization in

anisotropic networks is challenging for schemes that use the hop count values as an approximation of the true

node distance (e.g. MDS and DV-HOPS). In fact, while this approach works well when the path connecting

any two nodes lies approximately on a straight line, it generates large errors in presence of obstacles. Any

two nodes can be physically close even if their hop distance is large.

The large error in anisotropic networks has motivated alternative approaches. For example, some

schemes use MDS to compute small local maps that are then stitched together into a global map [153, 74].

Although this approach yields to an interesting distributed scheme, the process of map stitching increases the
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Figure 5.9: Sample anisotropic topologies. Red squares are the anchor nodes.

complexity of the solution and is susceptible to large errors when the connectivity is low. If some components

of the network are not rigidly connected, the sub-maps may get stitched together with the wrong relative

orientation [115].

A scheme capable of localizing irregular networks without having to partition the map and encumber

the complexity of map stitching would simplify localization in practical applications. The SOM schemes is

potentially well-suited for this task because its learning algorithm is designed to mainly exploit the interaction

of nodes within a short hop distance, while nodes that are several hops away have a weak interaction and do

not directly influence each other.

In this section, the performance of the proposed schemes are evaluated by generating simulation

scenarios with few large obstacles blocking the communication between nodes. Two sample topologies

are shown in Figures5.9a and5.9b. The figures refer to these two simulation scenarios as “C” and “W”

deployments. For each topology, 50 networks were generated using the same noisy grid model described

in Section3.3.1. The only difference is that nodes are not allowed in correspondence of the obstacles. The

connectivity information are obtained by first sampling pairs of RSS values using the shadowing model of

Section4.1.5with parametersnp = 4, σdB = 3dBm, and then selecting a threshold as in (4.5). Two different

threshold values were used, resulting in half the networks having connectivity around 6.5 and the other half

above 12. For each network, localization was repeated 25 times using different realization of the RSS values;

the results of these repetitions were used to compute the RMS error and compare it with the CRB.

Table5.1shows the simulation results; in addition to the average RMS error, the table also reports the

average localization error relative to the communication rangeR. The maximum range was computed using

the parameter of the shadowing model and the threshold, so it should be intended in the sense ofexpected
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"C" conn =6.68 "C" conn =12.49 "W" conn =6.69 "W" conn =12.92
Scheme Err(R) RMS Err(R) RMS Err(R) RMS Err(R) RMS
MDS 1.44 37.0m 1.12 45.7m 1.15 28.8m 0.69 27.2 m
DVH 0.86 20.3m 0.63 22.1m 0.74 18.7m 0.53 21.0 m
SOM-A 0.31 7.7m 0.27 9.5m 0.31 7.9m 0.24 9.9 m
SOM-R 0.29 7.3m 0.21 7.8m 0.28 7.3m 0.18 7.4 m
CRB 6.8m 7.0m 7.8m 6.5 m

Table 5.1: Localization results in anisotropic networks.

maximum communication range. The SOM-A’s and SOM-R’s results were computed using the same training

distribution described in Section3.5.1(i.e. without knowledge of the obstacles’ presence.)

The results shows that SOM-A achieves an average error comparable to that of uniform networks.

On average, the SOM-A’s error is 75% and 60% lower than the error of MDS and DVH respectively. The

errors for MDS and DVH on the “C” topology are comparable with previously published results reported

by Vivekanandan and Wong [167] and Niculescu and Nath [125] for the same type of network. SOM-R

generates an additional 15% error reduction with respect to SOM-A.
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Figure 5.10: Sample results for anisotropic layouts: the SOM-A algorithm reduces the average localization
error of 75% with respect to MDS.



Chapter 6

Localization using Directional Antennas

The directional antenna (DA) is an established technology that is effective in improving the performance of

wireless networks. The ability to radiate the RF signal toward the receiver results in a more efficient utilization

of power, in a better link quality, and in an increased transmission range. In addition, since communication

is restricted in space, interferences between devices are reduced andspatial reusabilitycan be exploited to

increase network capacity and throughput [69, 177, 18].

The improved performance of DAs make them suitable for cellular towers and base stations, but

their use in ad-hoc wireless networks is not equally widespread. One complication is the need for specific

protocols capable of supporting directional communication. Many extensions to the popular IEEE 802.11

MAC layer have been proposed in the literature [18, 85, 37, 162], and several other works have addressed the

problem of directional routing [156, 169, 36, 76]. But despite the research effort produced, the lack of central

coordination typical of ad-hoc networks makes it difficult to fully take advantage of the directive technology,

especially when nodes are mobile [16].

Similarly, DAs have been considered not suitable for sensor network applications. In WSNs, simpli-

fied1 communication protocols can be adopted [147, 44], but the complexity of the DA technology (mainly

cost and size) seems to contrast with the need to keep the nodes simple, small and inexpensive. Nevertheless,

as radio communication moves to higher frequencies and antenna dimensions shrink, the use of DAs on sen-

sor nodes appears not only feasible [96], but also desirable to compensate for the higher path loss intrinsic of

shorter wavelengths, to ensure higher link quality, and to implement a form of antenna diversity [176].

1The design of MAC protocols using directional antennas is in part simplified by the fact that sensor nodes are static and transmissions
are sporadic. In addition, directive routing protocols can exploit the fact that sensor nodes typically transmit all their data to a single
aggregation point (a cluster head or a base station).
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Figure 6.1: One of the switched-beam antennas developed in collaboration with Microelectronics Lab at the
Università Degli Studi di Firenze, Florence, Italy.

Another advantage of DAs is that they can be used to estimate the angular position between pairs of

nodes, and this information can be used to implement localization schemes based onAngle of Arrival(AOA)

information [121, 175, 111]. This approach improves over RSS ranging schemes for two reasons:

1. AOA estimates can be obtained without assumptions on the propagation model that relates the RSS to

the distance. As shown in the algorithms in Section6.1.3 and 6.2, only knowledge of the radiation

pattern is required to estimate the AOA of the incoming messages. On the other hand, RSS raging is

based on the propagation model for the RF signal in a given environment (see Section4.3.1). Extensive

measurement campaigns are needed in order to identify a suitable propagation model and estimate its

parameters.

2. AOA-based localization requires a lower number of anchor nodes than localization based on distance

estimates. In the 2D case, only two anchors are needed when using angles, while at least three reference

nodes are needed when using distance estimates (see Figure2.6).

The last part of the research work presented in this dissertation has been dedicated to the study of DAs and

evaluation of AOA estimation algorithms. As a result of joint work with the Microelectronics Lab, Università

Degli Studi di Firenze, ITALY, two different antennas suitable for AOA estimation have been designed,

prototyped and tested. The use of these antennas and their application to localization is described in the

following sections. Additionally, the use of AOA information in the SOM localization scheme is described

in Section6.3
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Figure 6.2: Azimuth AOA estimation.

6.1 Azimuthal Angle of Arrival Estimation

Several examples of localization schemes that use angular information have been proposed in the literature.

These solutions use DAs to estimate the AOA of messages transmitted by other nodes located in the same

plane of the antenna. This configuration enables estimation of the azimuthal angleθ (see Figure6.2); absolute

localization in 2D can be achieved by combining angle estimates from two reference points.

This section describes a directional antenna suitable for azimuthal AOA. An extension of this princi-

ple is discussed in Section6.2, which proposes a directional antenna capable of estimating both the azimuth

and elevation angle of the incoming messages.

6.1.1 Four Beam Directional Antenna (FBDA)

The first antenna developed in collaboration with the MicLab at Univ. of Florence is a unit dubbedFour Beam

Directional Antenna(FBDA). The FBDA is composed of four coaxially fed planar patch antennas arranged

in a “box like” structure as shown in Figure6.1. Each face is realized on a two-layer RF4 substrate [15]

having planar dimension of56mm× 56mm and thickness of2.4mm. The four patches, which operate in

linear polarization, share a common design that has been optimized using the Ansoft-HFSS CAD [9] to work

in the 2.4 GHz ISM band. The mechanical arrangement of the four patches and their coaxial feeding is such

that the vertical axis of the box coincides with the intersection of the E-planes of the single patches (i.e. the

E-field is perpendicular to the ground).

The RF signal is distributed to the four faces by a single-pole four-trough switch, which is controlled

by two digital lines and allows the host node to dynamically select the face to use. The losses due to the

switch, the distribution network and the mismatches are about1.5dB within the selected ISM band.

The characterization in the anechoic chamber has given the patterns reported in Figure6.3. In spite

of the low-cost substrate and reduced thickness, the patch gains measured at the external SMA connector,
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Figure 6.3: Radiation patterns of the four antenna faces. The patch used for transmission/reception is selected
using two digital lines.

hence including the losses listed before, are comprised between8.3dBi and7.5dBi. Figure6.3 shows that

the combined patterns ensure an approximately uniform coverage of the360◦ horizon.

6.1.2 Principle Of Operations

Consider a target node equipped with an omni-directional antenna. The target node transmits radio packets

to a base station equipped with a FBDA (see Figure6.4). The goal is to estimate the angle of arrival of such

messages relative to a reference system aligned with the antenna’s axes. Measuring the RSS on two antenna

faces provides sufficient information for AOA estimation [11, 175, 111]. According to the Friis’ free space
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Figure 6.4: Distances and angles of a target node relative to patch 1 and 2.

equation, the received powerPr1 andPr2 on faces 1 and 2 is:

Pr1 =
PtGtGr1(θ1)

r21

(
λ

4π

)2
(6.1)

Pr2 =
PtGtGr2(θ2)

r22

(
λ

4π

)2
, (6.2)

wherePt is the power of the target’s messages transmitted using an omnidirectional (OD) antenna with gain

Gt. The valuesGr1(∙) andGr2(∙) are the angular gains of the patches 1 and 2 and depend on the angles of

arrival θ1, θ2. Since the relative angle between each patch is fixed (90◦ in the proposed antenna), the ratio

between the power received on the two patches is equal to the ratio between the antenna gains for anglesθ1

and(θ1 − π/2):
Pr1

Pr2
=

Gr1(θ1)

Gr2(θ1 − π/2)
. (6.3)

The relation above holds when the distance of the target from the directional antenna is much larger

that the distance between the faces of the antenna itself. Ifr1, r2 >> d, thenr1 ∼= r2 andα0 ∼= 0, see

Figure6.4. This scenario covers most cases of practical interest. Under the same assumption, the equations

that relate the power received on the other patches can be derived (see Figure6.5a,b):

Pr1

Pr3
=

Gr1(θ1)

Gr3(θ1 + π)
, (6.4)

Pr1

Pr4
=

Gr1(θ1)

Gr4(θ1 + π/2)
. (6.5)
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(a) (b)

Figure 6.5: Distances and angles of a target node relative to patches 1-3, and patches 1-4.

Although measuring the RSS values on patches 3 and 4 is not strictly necessary for AOA estima-

tion, the availability of additional measures improves the robustness of the estimation process. The angular

relations above can be combined in the following system of equations:

DP = DG(θ) + V, (6.6)

whereDP = [(Pr1 − Pr2) (Pr1 − Pr3) (Pr1 − Pr4)]
t is a column vector containing the power differences

between the patch n.1 and the other faces (in dBm), andDG contains the gain differences for any angleθ (in

dBm):

DG(θ) =









Gr1(θ)−Gr2(θ − π/2)

Gr1(θ)−Gr3(θ + π)

Gr1(θ)−Gr4(θ + π/2)








. (6.7)

Finally, the vectorV = [v1 v2 v3]
t models the noise in the measurements and the effect of inaccurate knowl-

edge of the radiation patterns.

6.1.3 AOA Estimation

Given (6.7), a solution to estimateθ is to use aLeast Square(LS) estimator. The LS estimator computes

the angleθ that minimizes theleast squared error normbetween the measured data and the functionDG(θ)

evaluated using the values from the radiation patterns:

θ̂ = argmin
θ
‖DP −DG(θ)‖2 . (6.8)



112

Although no attempt was made to characterize the error affecting the measured data, it is known

that when the noise componentV in (6.6) is Gaussian with zero mean, the estimator (6.8) coincides with the

maximum likelihood estimator [166]. Therefore, this solution is equivalent to previous approaches that have

evaluated AOA estimation in condition of normal distribution of the noise (e.g [11]).

Multiple Signal Classification (MUSIC)

Another technique to obtain AOA estimates is based on theMultiple Signal Classification(MUSIC) [87]

algorithm. The signal impinging on the four antenna faces can be expressed by the following relation:
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, (6.9)

wherex(t) is the signal (in volts) at the output of the antenna,s(t) is the signal transmitted by the target and

ni(t) areAdditive White Gaussian(AWG) noise components.

The MUSIC algorithm produces a “spectrum”P (θ) that exhibits peaks for anglesθ close to the

true AOA of the incoming signals. The spectrum is computed as a result of an algorithm that includes the

following steps:

1. Data Collection. A sequence of RSS values on the four antenna faces is collected by exchanging radio

messages.

2. Covariance Estimation.TheSpatial Covariance MatrixR is estimated using the sequence of available

RSS values.

3. Singular Value Decomposition. The matrixR is decomposed usingSingular Value Decomposition

(SVD). Assuming a single signal source (the target node), one of the eigenvectors is related to the

target’s messages, while the other three are related to the noise.

4. Projection. Thesteering vectorG(θ) = [G1(θ), . . . , G4(θ)] is projected onto the subspace spanned by

the noise eigenvectors:

P (θ) =
G(θ)HG(θ)

G(θ)HΠ̂⊥G(θ)
, (6.10)

where the matrix̂Π⊥ contains the three noise eigenvectors.
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function [Pm] = DOA_music(G,X,M)
% AOA estimate using music algorithm.
% G: Steering Vector - [360 x 4] matrix
% X: RSS samples - [4 x n] matrix
% M: number of signal sources (typ. M = 1)

L = size(X,1);
n = size(X,2);

% replace NaN values
[i,j] = find(isnan(X));
X(i,j) = -95;

% Convert RSS and Gains from dB
X = 10.^(X/10);
G = 10.^(G/10);

% Compute the Spatial Covariance Matrix
Rh = zeros(L);

for i = 1 : n
Rh = Rh + X(:,i) * X(:,i)’;

end
Rh = Rh ./ n;

% Singular value decomposition
[U,D,V] = svd(Rh);

% separate signal component from noise

% signal
Us = zeros(4);
Us(:,1:M) = U(:,1:M);
Ds = zeros(4);
Ds(:,1:M) = D(:,1:M);

% noise
Un = zeros(4);
Un(:,M+1:4) = U(:,M+1:4);
Dn = zeros(4);
Dn(:,M+1:4) = D(:,M+1:4);

% compute the music spectrum
Pm = zeros(1,length(G));
H = Un* Un’;
for i = 1: length(G)

Pm(i) = (G(i,:) * G(i,:)’)/(G(i,:) * H* G(i,:)’);
end

Figure 6.6: MATLAB Code for the implementation
of the music algorithm

Music Spectrum: Target at −90◦

Music Spectrum: Target at 90◦

Music Spectrum: Target at 180◦

Music Spectrum: Target at 0◦

Figure 6.7: Music spectrum computed from mea-
sured data for the target at0◦, 90◦, 180◦ and270◦.



114

Figure6.6contains the MATLAB code used to implement the MUSIC algorithm. Figure6.7shows

examples of the MUSIC spectrum computed using RSS values measured in a open field with the target

positioned at0◦, 90◦, 180◦ and270◦ with respect to the directional antenna. In the four cases analyzed, the

estimated AOA, which coincides with the position of the peak, is close to the true angular position of the

target.

6.1.4 AOA Estimation Results using In-Field Measurement Data

Data collected during in-field experiments were used to evaluate the error of the AOA estimation algorithms

described in the previous sections. Four sets of measurements were collected by placing the target node at

about 3 meters from the base station, with both nodes elevated of 1.2 meter above the ground. The data

was collected in two different scenarios: an open-field (see Figure6.8a) for the first set of measurements,

and a location in proximity of a building in the second case. During the experiments, the node with the

directional antenna was rotated around its vertical axis on 24 different angular positions, spaced by15◦

each. The RSS values on each patch were collected by transmitting bursts of 50 data packets from the target

node, and each experiment was repeated using two different level of transmission power (−25dBm and

−15dBm).

Figure6.8.b shows the estimation error of the LS and MUSIC algorithms for the two cases: the

columns marked with an “A” refer to the measurements in the open field, while the columns marked with “B"

refer to the experiments made in proximity of the building. The average error is comprised between9.8◦ and

23◦, with noticeably larger values in the second set of experiments. In that case, reflections of the signal from

nearby building are a source of noise that degrades the accuracy of the estimation process.

The radiation patterns used in the two algorithms were measured for an antenna that was differ-

ent from the unit used during the tests. Since the antennas are hand-built and accurate control of the an-

tenna characteristics is not possible, part of the error originates from imperfect knowledge of the radia-

tion patterns of the antenna used. To mitigate these errors, AOA estimation was repeated considering ra-

diation patterns computed using the measurements made at−25dBm. The error achieved in this case is

sensibly lower than the previous case, with values that are comprised between5◦ and 13.25◦ (See Fig-

ure6.8.c).
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(a) A view of the setup used to collect the RSS value to test the Angle of Arrival estimation algorithms.

A (-25dBm) A (-15dBm) B (-25dBm) B (-15dBm)
LS 10.4(7.9) 13.6(12.21) 15.6(15.2) 23.0(23.8)

MUSIC 9.8(7.6) 10.6(9.8) 17.1(17.5) 15.6(17.0)

(b) Results from the experiments. The value in the table represent the average error in
angle estimation. The value in parenthesis are the standard deviation of the error.

A (-25dBm) A (-15dBm) B (-25dBm) B (-15dBm)
LS – 5.1(5.0) – 13.25(15.5)

MUSIC – 6.0(8.7) – 9.1(11.5)

(c) Average error (and std. dev. in parenthesis) when a set of measurements is used to
estimate the radiation pattern of the antenna.

Figure 6.8: Result of AOA estimation experiments: the table b and c report the estimation error in two cases
(A and B) and using two transmission levels (−25dBm and−15dBm).
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Figure 6.9: a) Bottom-up view of the switched-beam directional antenna used to implement thesingle-anchor
localization system. b) Simulated radiation patterns when faces 1 and 2 are active.

6.2 Indoor localization Using a Single Anchor Node

This section describes a localization system that takes the directional approach one step further by using the

second antenna (see Figure6.9) developed in collaboration with the MicLab, Univ. Of Florence, Italy. The

proposed antenna implements single-anchor node localization system. The single anchor node, which serves

as a Base Station (BS), is installed on the ceiling of any large indoor space, in a position unobtrusive to the

users. Due to the 3D arrangement of the antenna elements, the system can locate a target by estimating both

the azimuthθt and elevationφt AOA of the incoming messages.

The proposed solution targets applications in large rooms or indoor open spaces where installing a

network of anchors is not desirable or feasible. Possible application scenarios include low-cost deployments

and ad-hoc applications (e.g. emergency response). To accommodate for different sets of requirements in

terms of accuracy and cost, three localization solutions are proposed. The system supports arange-free

(proximity), a range-basedand afingerprinting localization approach. The proposed schemes, which are

evaluated using RSS traces from a real deployment, show that satisfactory localization results are possible

using a single anchor node.

6.2.1 Antenna Design

The antenna mounted on the BS was designed with the goal to implement a compact, low-cost system with

a steerable beam capable of selectively illuminating the space underneath the BS and collecting information

useful for target localization.
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The proposed solution is an incoherent array of six adjacent radiating elements, assembled to form

a semi dodecahedron (see Figure6.9a). Each element is implemented in microstrip antenna technology on

a pentagonal plastic substrate and fed by a coaxial probe. The operating frequency is 2.45 GHz with a

bandwidth compatible with IEEE 802.11 and IEEE 802.15.x devices such as WLAN, Bluetooth and ZigBee

transceivers. Given the intended use in indoor applications, the antenna elements are implemented in circu-

lar polarization technology. This design that has proven useful in mitigating multipath effects in reflective

environments [75].

A single-pole six-through RF switch is used to multiplex each radiating element. Under control of

the BS, the switch connects one of the six radiators to the transceiver. The inactive faces, which are terminated

on matched loads, behave as dummy loads, without significantly perturbing the radiation pattern of the active

patch. Figure6.9b shows two of the six radiation patterns simulated using the Ansoft HFSS software[9]. The

directivity is typical to that of a microstrip antenna, with the main lobe pointing in the direction perpendicular

to the active face.

6.2.2 Localization Application

This section describes the implementation of aproof-of-conceptapplication where the antenna is used to

estimate the position(xt, yt) of a mobile target in a large classroom containing rows of desks and chairs. The

antenna was placed approximately in the center of the room, two meters above the desks, and with the face 1

pointing toward the floor. RSS traces were collected on a6×4 grid (see Figure6.10) by exchanging bursts of

100 messages between the target and each of the six antenna faces. The measured data was used to evaluate

the performance of three different localization algorithms described in the following sections.

6.2.3 Principle of operations

Let the pair of angles(φt, θt) define theDirection of Arrival (DOA) of the target’s messages. The term DOA

is used in place of AOA to emphasize the difference between estimation of a single angle and the pair(φt, θt).

According to the Friis’ equation, the power received by each facei depends on its gainGi(φt, θt) and the

target’s distance. Given the small physical dimensions of the antenna, all the faces are at about the same

distance from the target. Similar to what was discussed in Section6.1.2, the differences in received power (in

dBm) between two facesi andj will only depend on their gains:

Pi − Pj = Gi(φt, θt)−Gj(φt, θt), (6.11)
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Note that with a fixed antenna position and assuming target’s movements in the planez = 0, there is

a one-to-one correspondence between the DOA(φt, θt) and the target’s position(xt, yt). Letm andm−1 be

the bijective functions that describe the mapping:

m : (xt, yt) → (φt, θt) (6.12)

m−1 : (φt, θt) → (xt, yt) (6.13)

The following sections will show how the above relations can be exploited to estimate the target’s position.

6.2.4 Range-Free Localization (Proximity)

The first approach evaluated is a range-free scheme that provides coarse-grained localization. This solution

bears resemblance to a simple proximity-based scheme, but instead of relying on a set of anchor nodes, it

only uses measurements from the switched-beam antenna.

To implement this solution, the radiation patterns and (6.12) are used to partition the deployment

area in a set of non-overlapping regionsS1, . . . , S6. These regions are computed by comparing the gains

Gi(m(x, y)) seen in different locations of the deployment area (see top row of Figure6.11):

Si = {(x, y) : Gi(m(x, y)) > Gj(m(x, y)), ∀i 6= j}. (6.14)
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Projection of the Antenna Gains Gi(m(x, y))
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Each areaSi contains the locations that are best illuminated by facei. In an ideal environment,

facei would receive the strongest signal (compared to the other faces) for any message sent from locations

(xt, yt) ∈ Si. Assuming a more realistic propagation model, the constraints on the RSS can only be for-

mulated in a statistical sense. For example, when the signal is described by the widely adoptedlog-normal

shadowing modeldiscussed in Section4.1.5, the average RSS (in dBm) follows a normal distribution. In this

case, each areaSi contains the locations where the statical expectation for the power on facei is larger than

the expected values on the other faces.

Based on the previous observations, at runtime the localization algorithm assigns the target’s position

to the areaSi that corresponds to the face measuring the strongest (average) signal:

(x̂t, ŷt) ∈ Simax, with imax= arg max
i∈[1,6]

{zi}, (6.15)

wherezi is the mean of the RSS valueszi = {z
(i)
1 , z

(i)
2 , . . .} collected by each facei at a given location. Note

that the computational requirements of this approach are minimal because the regionsSi are computed off-

line and only depend on the antenna position and its radiation patterns. In particular, by varying the antenna’s

height it is possible to adjust the size of the areasSi and control how the deployment area is partitioned.

The measured RSS data (see bottom row of Figure6.11) were used to evaluate the result of the

assignment (6.15). Figure6.12 shows the deployment area partitioned according to the areasS1, . . . , S6

and the classification results on the 6×4 grid points. Some misclassification occurred, especially between

adjacent areas and in one corner of the room, where the effect of multipath was more severe. To each point

it was assigned an error equal to the distance between its position and the center of the areaSimax computed
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using (6.15). The average error is equal to2.34m. Despite these errors, the simplicity of this approach is

attractive to applications that can tolerate approximate positions. The results could be improved by computing

the regionsS1, . . . , S6 using more sophisticate models, such as the ray tracing approach adopted in a previous

localization system based on a single base station [178].

6.2.5 Range-Based Localization (DOA Estimation)

The second solution implemented uses the measured RSS values to estimate the DOA(φ̂t, θ̂t) of the incoming

packets. This implementation uses the popular MUSIC approach already described in Section6.1.3. The

algorithm is simular to the azimuthal AOA estimation, but the spectrum is now evaluated for pair of angles

(φ, θ) (See Figure6.13). Let PM (φ, θ) be the spectrum produced by the MUSIC algorithm. The estimated

DOA is defined by the pair of angles that yield the maximum spectrum value:

(φ̂t, θ̂t) = arg max
(φt,θt)

{PM (φ, θ)} . (6.16)

Then the target position is estimated by applying (6.13):

(x̂t, ŷt) = m
−1(φ̂t, θ̂t). (6.17)

Compared to the previous case, this method is computationally more expensive, but it allows for

fine-grained localization. Figure6.14a shows the localization error using the same set of RSS measurements

previously shown. The average localization error is equal to 1.69 m.

This approach extends previous solutions exploiting beacon with directional antennas located on the

target’s plane [130, 111]. When DOA estimation is limited to the azimuth angleθt, single-anchor localization

is not possible unless combined with distance estimates obtained from RSS measurements. In the proposed

application, since both the azimuthθt and elevation anglesφt are estimated, target positions in thez = 0

plane can be resolved without need of additional information.

6.2.6 Fingerprinting

The last solution tested is a fingerprinting scheme that estimates the target’s position by comparing the RSS

on the six antenna’s faces against a database of previously measured values. This approach offers a low-

computation solution that is oblivious of the RF propagation model and the antenna gains. On the downside,
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Figure 6.13: Values of the MUSIC spectrumPM (φ, θ) represented in spherical coordinate system centered
on the antenna position. The strongest value defines the estimated direction of the incoming signal.

it requires a site survey to collect RSS signatures at several locations of the deployment area.

In the proposed solution, the database was created using the average RSS values[z1, . . . , z6] col-

lected on the6 × 4 grid (see Figure6.11); a second set of similar measurements was used to evaluate the

localization error. Each location was estimated by first computing the Euclidean distance between the actual

RSS values and the stored measurements, and then applying aK-Nearest Neighbor(KNN) regression algo-

rithm [104]. The better results were achieved by settingK = 1, which yielded an average localization error

equal to2.32m (see Figure6.14b).

The average error achieved using fingerprinting is comparable to the error achieved using DOA, but

it has a larger variability. The large error on some grid points was probably caused by the different type of

antenna mounted on the target device in the second round of measurements.

6.2.7 Discussion

The proximity and range-based approaches discussed in Sections6.2.4and6.2.5, which are based on the

DOA of the target’s messages, are suited for large rooms or indoor open spaces whereLine Of Sight(LOS)

communication with the BS station can be ensured. Outdoor localization can be also supported by placing

the BS at a sufficient height. For example, the antenna could be installed on a tall pole placed approximately

in the center of the deployment area.

When LOS communication is possible, the experimental results discussed in this chapter have

shown that single-anchor 2D localization is feasible using a low-cost, RF-based system that requires zero-
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Figure 6.14: Localization results using a) DOA Estimation, b) Fingerprinting.

configurations. The reported results were obtained with an initial antenna prototype optimized for size and

using simulated radiation patterns. Most likely, the error could be further reduced by using antenna faces

with larger ground planes and radiation patterns measured in an anechoic chamber.

Although experiments were conducted in only one environment, larger localization errors are to be

expected in cluttered environments and for non LOS communication. For such applications, the fingerprinting

approach discussed in Sec.6.2.6 represents a viable solution. The localization results are comparable to

other fingerprinting solutions described in literature [104], and the use of a single anchor can alleviate the

deployment costs when an infrastructure of anchors is not already available.

6.3 Use of Angle Information in Collaborative Localization Schemes

A target node at an arbitrary position can be geo-located using measurements from a single anchor node

equipped with the antenna described in the previous section. Alternatively, the position of the same target can

be determined by combining two AOA estimates from base stations using DA’s similar to the unit described in

Section6.1. Example of localization schemes that use AOA information have been described in Section2.3,

and other solutions can be found in the literature. For example, Nasipuri and Li [121], and several other

authors (e.g. [38, 130, 122, 45]) have proposed schemes where each node estimates its position by listening

to directional beacons transmitted by anchor nodes in the corners of the deployment. Yang et al. [175] have

evaluated the use of DA’s to estimate the position of a mobile node by combining AOA and RSS-ranging

measurements, and Malhotra et al. [111] have extended this approach for use of anchor nodes that are not

aligned with respect to a common reference system.
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As discussed in the introduction regarding GPS, localization schemes that use measurements from

directional beacons represent a special instance of the localization problem. In fact, every node to be localized

need to be in the radio range of the base station(s) with the directional antenna. If some of the nodes are

located outside the coverage area of the BS’s, their position can be computed using collaborative localization

schemes. This approach requires the presence of additional nodes configured to work as a network, but it

will work even if some (or most) of the units are not in the radio range of the reference nodes. Examples

of collaborative schemes using AOA information are solutions based on the MLE [117, 135], or the solution

based on a planar spanner graph proposed by Bruck et al. [28, 29]. In the same work, the authors have also

proved that the problem of locating the nodes using local angle information is NP-Hard.

The next section describes the use of AOA information in the SOM localization algorithm. The

solution targets ad-hoc networks where only a limited number of devices are equipped with a switched beam

antenna, and the coverage area of these reference nodes does not necessarily include the whole network.

Preliminary simulations show interesting results. In networks with sufficient connectivity, the use of a single

anchor node with a switched beam antenna can effectively replace four anchors in the corners of the network.

6.3.1 The SOM Localization Scheme Using AOA Information

The SOM technique is based on a learning algorithm that applies similar weight updates to adjacent neurons.

When the weights model the position of a set of wireless nodes, SOM implements a simple and elegant

solution to approximate the node positions using proximity constraints (SOM-V and SOM-A) or RSS values

(SOM-R). This section proposes a modification to the algorithm capable of exploiting AOA information

in the training phase of the map. The basic idea is to modify the SOM learning algorithm so that, at each

iteration, the position of nodes in proximity of a directional antenna is adjusted to match their estimated AOA.

System Model

Assume the typical 2D localization scenario withn nodes placed at unknown location andm anchors located

at known positions. Also assumek of the base stations equipped with a switched beam DA similar to the

one described in Section6.1. TheseDirectional Base Stations(DBS) are manually aligned according to

a common reference system, or equipped with a magnetometer for automatic alignment with the earth’s

magnetic field. LetDNBk = {n
(k)
1 , . . . , n

(k)
kp } contain the ID’s of the nodes in the radio range of thekth

DBS, and letDAOAk contains the estimated AOA of the messages transmitted by each of such neighbor:

DAOAk = {θ
(k)
1 , . . . , θ

(k)
kp }.
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Figure 6.15: At each step of the SOM-Xθk algorithm the position of each neighbor in proximity of a direc-
tional antenna is updated to match their AOA estimate.

Modified SOM Algorithm

The base SOM algorithm is modified to include directional information in the training phase of the map.

Before executing each iteration, the position of each noden
(k)
i in the radio range of thekth DBS is adjusted

to match the estimated AOAθ(k)i (see Figure6.15). Note that the adjustment only changes the bearing of

each neighbor without altering their distance from the DBS. This modification is compatible both with the

use of connectivity information (SOM-V and SOM-A) and RSS values (SOM-R). In the rest of this section,

the notation SOM-Xθk will be used to denote a SOM variant used and the number of DBS’s. For example,

SOM-Aθ4 will indicate the variant that uses connectivity information and four DBS’s, while SOM-Rθ1 will

denote a version that use RSS values and a single DBS. The pseudocode describing the changes necessary

to include AOA information in the SOM learning algorithm is shown in Algorithm2. Extension to the 3D

case is straightforward using a switched beam antenna as the one in Section6.2 capable of estimating both

the azimuth and elevation AOA of the messages.

6.3.2 Collaborative Single-Anchor Localization

This section evaluates the effectiveness of the proposed solution in a special case where the network contains

only one BSD placed in the center of the network at a known location. As discussed in Section6.2, single-

anchor localization can be useful in supporting emergency response applications or any other deployments

where it is not possible to install and maintain a network of reference nodes.

Anchor-free localization is evaluated first by comparing the performance of SOM-A and SOM-Aθ1.

Note that the SOM-Aθ1 learning algorithm requires knowledge of the physical dimension of the deployment

area. Since only one anchor is used, this information cannot be inferred from the position of anchor nodes
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Algorithm 2 : 2D SOM-θ Localization

Input: Matrix Dh: hop count distances among nodes
Input: Dimensions of the deployment area
Output: [xj , yj ] for j = 1, . . . , N : node positions

% Parameter Initialization

1: ηmax= 0.1; ηmin = 0.01;
2: σmax= max

i,j
{Dh}/2; σmin = 0.001

3: for all nodesn do
4: [xn, yn]

T = random()
5: end for

% Main Loop

6: for n = 1 : to N_ITER do
7: η = ηmax− n(ηmax− ηmin)/(N_ITER− 1)
8: σ = σmax− n(σmax− σmin)/(N_ITER− 1)

% Use AOA Information to reposition DBS’s neighbors

9: for all directional base stationsk do
10: for all neighborsi of k do
11: dist = ‖[xi, yi]− [xk, yk]‖
12: [xi, yi] = [xk + dist cos θ

(k)
i , yk + dist sin θ

(k)
i ]

13: end for
14: end for

15: (x, y) = random() % inside the deployment area
16: c = argmin

j
‖(x, y)− (xj , yj)‖

17: for all network nodesj do
18: hcj = exp

(
−Dh(c, j)2/2σ2

)

19: [xj , yj ]+= η hcj([x, y]− [xj , yj ])
20: end for
21: end for

The gray markers show the code that has been added or modified with respect to the original version.

located in the corners of the network, as in the case of the standard SOM-A; therefore the size of the deploy-

ment area must be esplicitely supplied at runtime.Also, the adjustment shown in2 do not need to be repeated

at every training cycle. The results described in the following sections were achieved by adjusting the AOA

once every 25 iterations of the standard learning algorithm.

Range-Free Collaborative Localization

The first simulation set compares the performance of SOM-A and SOM-Aθ1 in localizing 64 node networks

similar to the ones in Figure6.16. The connectivity information was generated by binary quantization of RSS
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Figure 6.16: The two localization scenario considered: a) a network with four anchors in the corners is
localized using SOM-A; b) The same network is localized using SOM-Aθ1; the four anchors are replaced by
a single base station capable of estimating the AOA of the messages transmitted by its neighbors.

data sampled from a log-normal distribution computed using parameters (d0 = 1m, P0 = −45dBm, np =

3, σdB = 6 dBm). Four anchor nodes where used for SOM-A, while only one anchor node placed approxi-

mately in the center of the network was used to train SOM-Aθ1.

For each network localized, the SOM-Aθ1’s results are evaluated using a two-step performance met-

ric. First, the alignment of the computed map is checked to determine if it matches the ground truth. Second,

the evaluation procedure computes the average localization error of the correctly aligned maps. Figure6.17

shows the results achieved in localizing sets of 100 random topologies generated with increasing connectivity

levels. For sparse networks, the number of nodes in the radio range of the DBS is low. Therefore, the angle
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Figure 6.17: Localization results using SOM-A4 (four anchors), SOM-Aθ1 (one directional anchor) and
SOM-Aθ4 (four directional anchors).
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adjustments made using the available information are not sufficient to ensure convergence to properly aligned

maps. To sensibly reduce the number of incorrect topologies, the network connectivity needs to increase to

values above 20. In these dense configurations, the SOM-Aθ1 algorithm not only produces an high percentage

of aligned maps, but also achieves a lower error than SOM-A (see Figure6.17b).

To provide a comparison baseline, the plots in Figures6.17b also show the error achieved when the

four anchor nodes in the corners are all equipped with directional antennas (SOM-Aθ4). The SOM-Aθ4’s er-

ror is significantly lower than the error of the other two variants and decreases steadily with the connectivity.

The SOM-Aθ4 algorithm does not specifically take into consideration nodes that are neighbors of multiple

DBSs, but when this happens, combining two AOA values is sufficient to estimate the position of the node in-

dependently from the rest of the network. When the connectivity increases, the availability of AOA estimates

for a large number of nodes compensates for the loss of accuracy that affects range-free localization. As dis-

cussed earlier, several applications using directional beacons have been discussed in the literature; therefore

the remaining sections will specifically focus on single-anchor applications of the directional SOM.

6.3.3 RSS-Based Collaborative Localization

As shown in the previous section, the SOM-Aθ1’s performance is heavily affected by the network connec-

tivity. A large number of neighbors in proximity of the DBS is required to ensure convergence to correctly

aligned maps. Unfortunately, the need for high connectivity penalizes the accuracy of the SOM technique.

As discussed in details in Chapter4, the information available to a range-free scheme decreases in dense de-

ployments. In facts, Figure6.17shows a SOM-A and SOM-Aθ1’s error steadily increasing for connectivity

above ten.

The limitations of range-free localization can be avoided by including RSS values in the training

phase of the map (SOM-R). The simulations of the previous section have been repeated using the SOM-R

scheme and its angle based variant. The number of incorrect topologies is generally lower than in the previous

case, and it reduces to only a few percent for connectivity above 15 (see Figure6.18a). The error plot shows

a SOM-Rθ1’s error approximately 20% lower than the SOM-R’s error for the larger connectivity value tested

(see Figure6.18a).

Effect of Noisy Measurements

All the simulations presented so far were executed assuming error-free AOA estimates. To test the effect

of noisy measurements, the simulations have been repeated by adding a component errorerrs to each an-
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Figure 6.18: Localization results using SOM-R (four anchors) and SOM-Rθ1 (single anchor).

gle estimate. The error added was sampled uniformly in the interval[−s, s] for four different s values:

s = {0◦, 5◦, 10◦, 15◦}. These error values are compatible with the error measured during the experiment

described in Section6.1.4.

The results in Figure6.19a do not show a significant correlation between the magnitude of the error

and the number of incorrect topologies. The effect of noisy measurements is more appreciable on the error

plots in Figure6.19b, which show graceful degradation of the SOM-Rθ1’s performance for increasing error

values. For angular error sampled in the interval[−15◦, 15◦], the SOM-Rθ1’s error using a single directional

anchor is close to the error of the SOM-R scheme that uses four anchors.
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Chapter 7

Conclusions

Localization in ad-hoc networks requires computing node positions with only a limited amount of initial in-

formation. Chapter3 has presented a solution that uses the Self-Organizing Map formalism to localize the

nodes using radio connectivity data and (possibly) no anchor nodes. The presented solutions were able to

produce accurate results in a variety of simulated scenarios. In addition, validation using RSS traces from real

deployments has shown accurate localization results, especially when using the SOM-R scheme capable of

combining connectivity and RSS information (see Chapter5). This solution ensures accurate localization in

sparse deployments as well as in fully connected networks; it is robust to noisy radio measurements and con-

ditions of anisotropic layout. Finally, the SOM localization approach, although centralized, was shown to be

characterized by a lightweight implementation that makes it suitable for devices with limited computational

resources.

This dissertation has also addressed localization from a theoretical point of view. Sections4.1 and

4.2have focused on the problem of determining an optimal quantization threshold to convert the RSS values

into connectivity data. As a result of an information-theoretical analysis, the optimal threshold has been

shown to be related to a network connectivity value dubbedoptimal connectivity (OC) (see Section4.2).

Notably, theOC value can be approximated using a function that only depends on the number of network

nodes. Inferring connectivity on the basis of theOC value ensures a condition of maximum information

content in the measurements, thus potentially reducing the error of any scheme that operates using radio

proximity data.
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After having defined how to convert RSS into connectivity data, Sections4.3 and4.4 have investi-

gated the difference between the range-free and the range-based localization approaches. The goal was to

understand in which conditions a connectivity based scheme can potentially outperform a range-based one

and vice versa. Using an approach similar to the one in Sections4.1 and4.2, the choice between the two

approaches has been shown to depend on thecritical connectivity (CC) value described in Section4.4. This

value can be approximated using a function that depends on the network size and the ratioσdB/np. Similar

to theOC value, knowledge ofCC can reduce localization error by guiding the choice between a range-free

and a range-based solution.

The theoretical results discussed in Chapter4 are based on analysis of the CRB for the localization

error. Not every range-free scheme will achieve its lowest error for network connectivity equal toOC, and

RSS ranging schemes might perform worse than range-free schemes for connectivity aboveCC. However,

if the schemes considered are known to perform close to the CRBs, analysis of theOC andCC values will

provide valuable information to reduce the localization error.

Finally, the last part of this dissertation has described the use of directional antennas for AOA esti-

mation. Section6.2has demonstrated the use of asemi-dodecahedronantenna for single-anchor localization.

This novel approach takes full advantage of the qualities of AOA-based localization, and it is capable of

computing the location of a 2D target without requiring knowledge of the propagation model for the RF

signal. The concept of single-anchor localization has been further explored by integrating angle information

in the SOM localization approach. The proposed solutions (SOM-Xθ1) implement collaborative localization

schemes that exploit AOA data from a single BS to produce absolute maps. Results of preliminary sim-

ulations show that in conditions of sufficient connectivity, the single-anchor version can improve over the

performance of the scheme using four anchor nodes.

7.1 Future Work

Localization Using Self-Organizing Maps

Localization based on the SOM technique has been explored in detail and evaluated using extensive sim-

ulation. Where possible, data from actual sensor networks has also been used to characterize the SOM’s

error. The deployment of a large test bed capable of collecting real-time data would help in obtaining a bet-

ter validation of the SOM’s performance under realistic conditions and using different types of information

(connectivity, RSS and AOA data). Another direction for future work is the design of a distributed version
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of the algorithm. Although the experimental results in Section3.7 have shown compatibility with resource-

constrained devices, a distributed implementation would make SOM localization attractive to a wider range

of applications.

Theoretical Analysis of RF-Based Localization Systems

The theoretical analysis in Chapter4 is valid for schemes that use only range estimates or connectivity infor-

mation. Additional information can be used with both of the approaches. For example, range-based schemes

can impose constraints on the minimum separation distance between disconnected nodes (e.g. [91]). Simi-

larly, connectivity-based schemes can use RSS information to “sort” one-hop neighbors [99]. This is also the

approach used to improve the performance of the SOM-R algorithm in Section5.2. In both the range-free

and range-based cases, using additional information will cause the localization error to decrease, and theOC

andCC will not necessarily provide useful information. Analysis of schemes using hybrid measurements is

left for future research work.

Chapter4 has also shown that the optimal connectivity for range-free localization can be computed

using a function of the network size. This result bears similitude to the popular work of Xue and Kumar

who have investigated the number of neighbors needed to ensure connectivity in a multi-hop wireless net-

work [174]. Their results show that asymptotic connectivity is ensured when the number of neighbors per

each node isΘ(log n), wheren is the network size. A study investigating further analogies between range-

free localization and asymptotic connectivity is also left for future work

Another research effort can be directed toward extending the CRB analysis to more realistic radio

models. The analysis in Chapter4 assumes a log-normal shadowing model with Gaussian distribution for the

average RSS. Although the use of this model is supported by both theoretical and experimental evidences, its

application does not take into account the non-ideality of the transceivers used in current wireless networks.

Messages transmitted using low-power devices are subject to error when the received power falls below the

radio’s sensitivity. When errors occur, the messages are dropped by the hardware and carry no RSS data useful

for localization. As a result, statistics based on the successfully received radio messages will be invariably

biased, especially when the RSS is close to the lower limit imposed by the hardware sensitivity. Even if the

underlying model was indeed log-normal, the data collected by a realistic device will not follow the same

distribution. Addressing these phenomena requires to consider the rapid fluctuations in the received power

(small-scale fading models [143]), compute the bit error rate, evaluate the probability that a packet is dropped,

and adjust the measurement model to take into account the effect of missing data packets. Investigating the
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Figure 7.1: a) Probability of “connected nodes” for pairs of nodes placed at distance2.5m and 6m;
the same probability are also evaluated when the node positions are shifted by a factorΔ = 0.5m. b)
Approximation of the Fisher informationFcon(d = 5m, dth) computed by evaluating the cross entropy
D(f ‖ fΔ) between the probability mass functions computed withd = 5m andd = 5 + Δm, where
Δ = {−2,−1,−0.5,+0.5, 1, 2}m.

fundamental limits under realistic operative conditions would give a significant contribution to the successful

application of RF-based localization technology.

Finally, future research work could use the relation between the Fisher information andCross En-

tropy (CE) and investigate applications to localization. The cross-entropy for two discrete random variables

is described by the following equation:

D(p ‖ q) =
∑

x∈X

p(x) log
p(x)

q(x)
.

The cross entropy, also known asKullback-Leibler distance, is positive value that is often used as a distance

measure between two distribution; in factD(p ‖ q) = 0 if and only if p = q. The cross-entropy is also

related to the Fisher information. Iff(X; θ) is the measurement model used in the estimation process, and

fΔ(c; θ + Δ) is the same probability function evaluated for a different value of the parameterθ, then the

Fisher information can be expressed as a function of the cross-entropy [50]:

F (θ) = lim
Δ→0

(
2

Δ2
D(f ‖ fΔ)

)

. (7.1)

Figure7.1a, shows the probability of measuring two nodes as connected for different threshold val-
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ues. The probabilities are computed for two nodes at distancesd equal to2.5m and6.0m. The same plot also

reports the probabilities when the node position is altered by adding an offsetΔ = 0.5m. The differences

between the two probabilities are maximized for threshold values that correspond to the true node distances,

a fact that concord with the results derived in Section4. Figure7.1b show the correspondence between the

cross-entropy computed for different values ofΔ and the Fisher information for connectivity measurements

when nodes are placed5m apart. As the offset value is reduced, i.e.Δ → 0, the value(2/Δ2)D(f ‖ fΔ)

becomes a close approximation of the Fisher information.

Equation (7.1) suggests that a node might be able to compute the amount of Fisher information by

evaluating how the connectivity changes as the position of the nearby nodes are perturbed. Although nodes

cannot be physically moved, changes in the connectivity could be evaluated by perturbing the quantization

thresholdPth. Application of this approach could result in a distributed scheme that allows each node to

determine a locally optimal threshold to estimate its own position using connectivity measurements.
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