
Wireless Localization Using Self-Organizing Maps

Gianni Giorgetti
∗

Dip. Elettronica e Telecom.
Università degli Studi di

Firenze, ITALY
gianni.giorgetti@unifi.it

Sandeep K. S. Gupta
IMPACT LAB

School Comput. & Info.
Arizona State University

sandeep.gupta@asu.edu

Gianfranco Manes
Dip. Elettronica e Telecom.

Università degli Studi di
Firenze, ITALY

gianfranco.manes@unifi.it

ABSTRACT
Localization is an essential service for many wireless sensor
network applications. While several localization schemes
rely on anchor nodes and range measurements to achieve
fine-grained positioning, we propose a range-free, anchor-
free solution that works using connectivity information only.
The approach, suitable for deployments with strict cost con-
straints, is based on the neural network paradigm of Self-
Organizing Maps (SOM). We present a lightweight SOM-
based algorithm to compute virtual coordinates that are ef-
fective for location-aided routing. This algorithm can also
exploit the location information, if available, of few an-
chor nodes to compute absolute positions. Results of exten-
sive simulations show improvements over the popular Multi-
Dimensional Scaling (MDS) scheme, especially for networks
with low connectivity, which are intrinsically harder to local-
ize, and in presence of irregular radio pattern or anisotropic
deployment. We analytically demonstrate that the proposed
scheme has low computation and communication overheads;
hence, making it suitable for resource-constrained networks.

Categories and Subject Descriptors
C.2 [Computer Communication Networks]: Network
Protocols

General Terms
Algorithms, Performance, Design.

Keywords
Self-Organizing Maps, Localization, Wireless Sensor Net-
works.

1. INTRODUCTION
In the era of pervasive computing, position-awareness is

rapidly becoming a key feature in many applications [1].
∗The author is also affiliated with the Electrical Engineering
Department at Arizona State University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’07, April 25-27, 2007, Cambridge, Massachusetts, USA.
Copyright 2007 ACM 978-1-59593-638-7/07/0004 ...$5.00.

This trend is confirmed by the fast growth of the Global
Positioning System (GPS) that has recently invaded the
consumer market. Once restricted to military applications,
GPS receivers are now common on cars, trucks, PDAs and
cell phones. With an estimated 14 million units sold in
2006 [5], the success of this technology underlines the im-
portance of locating people and things in a world where
computation and communication are becoming ubiquitous.
Position-awareness is also of primary importance in Wire-

less Sensor Networks (WSN) [10], which is an enabling tech-
nology for pervasive computing. Consisting of small sensors
with wireless capabilities, these networks are easy to deploy
and represent a cost effective alternative to traditional wired
systems. Typical applications include environmental moni-
toring, asset tracking, surveillance and disaster relief [2]. In
each case, the data gathered by the sensors are of scarce
utility unless stamped with the location of the node that
collected it. For example, in precision agriculture, temper-
ature and moisture values are correlated with position to
identify micro-climate zones [40]. Knowing the sensors’ po-
sition is also critical for locating an intruder vehicle in a
military application as well as to guide a team of firefighters
to the location of an emergency. Finally, locations are used
to support network services like geographical routing [19],
location-based queries [16] and resource directories [28].
Given the importance of this information, several recent

research efforts have focused on incorporating location aware-
ness in those applications where the use of GPS is not a vi-
able solution [15, 26]. Many of the proposed schemes assume
the presence of a large number of anchor nodes or the avail-
ability of hardware for range and angle measurements. Al-
though these configurations are simple to simulate, they are
not practical to implement in applications that call for true
ad hoc deployment or where cost is a major issue. We also
note that many localization schemes target unrealistically
large WSNs with high connectivity. While a few examples
of such large, dense deployments are being experimentally
evaluated within the research community [3], a recent sur-
vey [4] reveals that most of the future WSN applications will
exploit small to medium networks with less than 100 nodes.
Contrary to other network services, a small number of nodes
and low connectivity are problematic for the existing local-
ization schemes since determining the sensor positions be-
comes intrinsically harder as the number of constraints (e.g.
range measurements or radio links) diminishes [13].
Motivated by these considerations, we propose a light-

weight localization scheme that works without anchor nodes
and does not rely on range measurements. The method,

which is based on a neural network formalism known as
Self-Organizing Map (see Section 3), generates virtual co-
ordinates that describe the relative positions of nodes. In
Section 5 we demonstrate through extensive simulations that
these virtual maps can be used for efficient geographic rout-
ing, with results that are very close to the case where the
real coordinates are available.
We also evaluate the localization error when absolute po-

sitioning is required: using only three or four anchor nodes,
the virtual coordinates can be converted into absolute po-
sitions by means of a linear transformation. Although in
this case we use the transformation after computing the
virtual coordinates, in Section 5.5 we show an extension
to the algorithm where anchor positions are actively used
during the localization process, allowing for further accu-
racy improvements. Using this extension, the localization
error drops below 0.3R (i.e. 30% of the radio range) for
networks with average connectivity of only four nodes. We
also evaluate the performance of the scheme when irregular
radio patterns affects the connectivity among nodes or when
the network has an anisotropic layout due to the presence
of buildings or natural obstructions in the deployment area.
Surprisingly, the scheme proves to be extremely robust and
none of these factors significantly degrade the localization
accuracy. The results are compared to those of the popular
Multi-Dimensional Scaling (MDS) technique [39], showing
substantial improvement especially for networks with low
connectivity or anisotropic layout.
Finally, in Section 7 we evaluate the computational and

communication complexity of the solution. This analysis, in
addition to benchmark tests on real hardware, shows that
our lightweight implementation is suitable to solve the lo-
calization problem in resource-constrained networks.

2. THE PROBLEM
A localization service must be able to compute the coordi-

nates of a set of randomly deployed nodes. We restrict our
attention to anchor-free and range-free schemes, meaning
that none of the nodes are placed at known positions and no
attempt is made to estimate the inter-node distances. Such
algorithms attempt to compute a network map using only
connectivity information that describes which nodes are in
radio range. Interest in such approaches is due to the fact
that each node can determine the set of its radio neighbors
with minimal communication overhead and without need-
ing any additional hardware (e.g. ultrasound transceiver for
range measurements or GPS); thus, enabling localization in
deployments where cost is of primary importance.
Before analyzing the complexity of the problem, it is use-

ful to remember that the coordinate assignment produced
by an anchor-free scheme is intrinsically ambiguous - since
no reference points are used, the maps produced are correct
up to global translations, rotations or flipping. In addition,
the result is arbitrarily scaled unless knowledge about the
average communication radius is used to properly scale the
map. As consequence of these ambiguities, the localization
scheme will generate virtual coordinates [31] that only de-
scribe the relative locations of nodes (nodes with similar co-
ordinates are physically close). Virtual coordinates, which
can facilitate network tasks as location-based queries and
proximity-based service discovery, have found prominent ap-
plication in the area of geographic routing [19, 25, 37]. By
knowing the relative position of nodes, geo-routing schemes

achieve efficient packet delivery without the memory over-
head of table-driven protocols or the latencies of on-demand
approaches.
Intuitively, a localization scheme produces a coordinate

assignment where neighboring nodes are within the maxi-
mum radio range and non-neighbors are further apart. Al-
though the problem can be stated in simple terms, the so-
lution in the general case is complex. A network with con-
nectivity constraints can be modeled as a Unit Disk Graph
(UDG) 1 and the localization problem can be posed as one
of embedding an UDG in an Euclidean space. This problem
is NP-Complete in one dimension and NP-hard in two di-
mensions [7]. Recently, the problem has been proved to be
APX-hard [29], meaning that the solution cannot even be
efficiently approximated. In fact, there exists node configu-
rations for which even an optimal algorithm cannot produce
an embedding with quality better than

√
3/2 [24]. While

this value limits the worst-case error for an optimal algo-
rithm, localization schemes with bounded errors are very
few. A recent work [31] proposes a scheme based on spread-
ing constants and random projection with a bound error of
O(log2.5 n

√
log log n), where n is the number of nodes. Al-

though this work has an appreciable theoretical value, from
a practical point of view we are still far from approaching
the theoretical bound of

√
3/2 [34].

Having outlined the characteristics of the problem, we
propose a solution inspired by a neural network paradigm
known as Self-Organizing Maps (SOMs) [21, 22]. Introduced
in the early 80’s, these maps have found numerous applica-
tions in many areas such as speech recognition, data mining
and bioinformatics ([20, 35] contain an extensive bibliogra-
phy of SOM papers). In the next sections, after introduc-
ing the map structure and the learning algorithm, we show
how the SOM formalism leads to an intuitive solution of the
localization problem. Unfortunately, despite the attention
received, SOMs have proved to be surprisingly resistant to
mathematical characterization and convergence results are
only available for the case of one-dimensional configuration
of neurons [9], therefore we use extensive simulations to char-
acterize the localization results and to compare our solution
to the MDS technique.

3. SELF-ORGANIZING MAPS
A SOM [21] is a neural network that learn application

information as a set of weights associated with the neurons
(nodes). In comparison with other techniques (e.g. Multi-
Layer Perceptron), SOMs are unique because the neurons
are arranged in regular geometric structures, typically two-
dimensional lattices with rectangular or hexagonal patterns
like the one in Figure 1a. As we will soon see, this spatial
arrangement plays a central role in the training process of
the maps and results in a topological organization of the
information learned2.
The training of a SOM is performed in an unsupervised

fashion: the map is able to learn the underlying properties of
the training set without the aid of labeled samples or reward
functions (hence, they are characterized as “self-organizing”).

1A Unit Disk Graph is a graph where two node are con-
nected iff their distance is less than 1.
2This model vaguely resembles the structure of the cerebral
cortex, where neurons are placed on a 2D surface and inter-
act preferentially over lateral synaptic connections.

Neuron j

Weight vector

=

jd

j

j

j

w

w

w

w
...

2

1

Neighboring Neurons

(a) SOM

Neighborhood Function h()

Weights changes

(b) Adaptation

Figure 1: A two-dimensional map with the unit
forming an hexagonal pattern.

Assuming that the input samples and the map weights wj ’s
are d-dimensional real valued vectors, the three phases of
the training algorithm are as follows:

1. Sampling: A sample is extracted from the training
set and presented to the network. We use the notation
x(n) to denote the sample at current iteration.

2. Competition: The sample x(n) is compared with the
map weights (there is one weight per neuron) through
the use of a discriminating function f = f(x, w). The
neuron that scores the maximum value wins the com-
petition and become the Best Matching Unit (BMU).
If the discriminating function is implemented using the
Euclidean distance, the election rule is given by:

BMU(n) = arg min
j
‖x(n)− wj(n)‖ . (1)

3. Adaptation: Finally, the weight vectors of the BMU
and its neighbors are adapted according to the follow-
ing rule:

wj(n + 1) = wj(n) + η(n) h(j, BMU(n))[x(n)− wj(n)].
(2)

The update formula in (2) is controlled by the global learn-
ing rate parameter η and by a neighborhood function h =
h(i, j) (see Figure 1b). For ensuring convergence, the learn-
ing rate η must decrease monotonically with the number of
iterations. A common choice is to implement the learning
rate as an exponential function that decays from ηmax to
ηmin over a given number of iterations. Typically, η de-
creases within the range [ηmax, ηmin] = [0.1, 0.01], while the
number of iterations goes from few hundreds to several thou-
sands depending on the size of the training set.
The update rule is also controlled by the neighborhood

function h = h(·, ·). This function regulates the weight
changes on the basis of the map distance between BMU and
the neuron being adapted. In the case of a Gaussian shaped
neighborhood function, the expression of h is given by:

h(i, j) = exp

(
−distmap(i, j)2

2r(n)

)
, (3)

where distmap(i, j) measures the distance on the map be-
tween two neurons. According to this expression, the mag-
nitude of the changes is maximum for the BMU and de-
creases for units that are far from it. The extent of the
area affected by the changes depends on the radius r(n),
a global parameter that controls the “width” of the neigh-
borhood function. As in the case of the learning rate, the

value of r(n) decreases with the number of iteration: a rel-
atively large radius during the initial iterations allows the
map to quickly organize the neurons, while a smaller value
toward the end determines localized changes, such that dif-
ferent parts of the map become sensitive to different input
features.
The SOM technique is simple yet effective in capturing

the properties of the input space and organizing them in an
ordered fashion. An example of the SOM method in action
is reported in Figure 2, where a 10 × 10 rectangular map
is trained with random samples x(n) = [rn, gn, bn] from the
RGB color space (Figure 2a). In this case, the weight vec-
tors have the form wj = [rj , gj , bj] and can be displayed
using the corresponding color. Figure 2b shows the initial
configuration of randomly assigned weights. After training
the map with a few thousand random samples, the SOM
assumes the configuration shown in Figure 2c. The result
shows that among the 224 colors of the input space, not
only the map was able to select 100 representative samples
(SOMs are vector coding techniques), but it also generated
a topologically ordered representation of the color space, in
the sense that similar colors were mapped to nearby loca-
tions. This property emerges as a consequence of the update
rule: since adjacent neurons are subjected to similar weight
changes, they eventually converge to similar values.

0

0.5

1

0

0.5

1
0

0.5

1

GREEN RED

B
LU

E

(a) (b) (c)

Figure 2: 10×10 SOM trained with samples from the
RGB color space: a) input space, b) initial weights,
c) final weights.

4. LOCALIZATION USING SOMS
At the end of the training phase, the neurons contain

model vectors that are representative of the input space,
therefore the map can be used as a codebook for arbitrary
samples. The code is given by the weight vector that best
matches (BMU) the given sample. In addition, since each
BMU defines a position on the two-dimensional grid, SOM
implements a projection technique3 from the input space to
the plane defined by the lattice of neurons (see Figures 2a
and 2c). This property has been widely exploited in many
applications for data analysis and visualization of large data
sets [20, 35]. More recently, SOMs have been used to im-
plement localization schemes for mobile robots in unknown
environments [17, 12]. The SOM, initially trained with in-
formation collected by on-board sensors during the explo-
ration phase, is then used as a virtual map to translate new
sensor readings into grid positions or to recognize different
environments (e.g. different rooms).
Ertin and Priddy [11] have used a similar approach to

solve the localization problem in WSNs. In their work, syn-
chronous readings collected by all the sensor nodes are used
3In this sense SOM can be seen as non-linear version of the
Principal Component Analysis (PCA) technique.

to build the training set for the SOM. After training the
model, the localization task is performed using new sensor
readings to sort nodes on the basis of their proximity to a
virtual grid of nodes. Although no attempt is made to com-
pute individual node positions, the authors suggest possible
applications to the target tracking problem. Our solution is
similar to [11] in the sense that it is also based on the SOM
formalism, but the approach taken is rather different since
it does not rely on sensor readings or time synchronization
services. In addition, our scheme explicitly computes indi-
vidual node positions as a result of the training phase of the
map. More details on the approach used in [11] are given in
Section 8.
The intuition behind the proposed solution is that, with

no prior information on sensor locations, the best assump-
tions we can make are: i) sensor nodes provide an (approx-
imately) uniform coverage of the deployment area and ii)
nodes that are within their radio range are relatively close
to each other. In Section 6, we consider non-uniform deploy-
ments and the effect of irregular radio patterns, neverthe-
less the two assumptions (uniform coverage, radio neighbors
close to each other) are realistic for many WSNs and are use-
ful to give an intuitive illustration of our approach. To solve
the problem we must therefore generate a location assign-
ment that is approximately uniform, taking care of placing
neighbor nodes close to each other. This is accomplished
by associating the unknown node positions (xi, yi) to the
weights of a SOM and then training the model with random
samples from an uniform distribution. As a result of the
training phase, the weights (i.e. nodes position) will even-
tually spread to cover the sampling area and, if associated
to adjacent neurons on the map, neighboring nodes will be
kept close to each other.
Using an approach substantially analogous to the one ex-

posed here, SOMs has been previously applied to graph
drawing [30, 6], a branch of graph theory that deals with the
visualization of complex graphs. The graph layout problem
is similar to the localization problem in the sense that it
also seeks to find a coordinate assignment such that vertices
connected by edges are positioned close to each other. How-
ever, while the evaluation of a graph layout is mostly based
on aesthetic factors (e.g. uniform distribution of nodes and
edge lengths, separation between graph elements, number
of edge crossing, etc.), the results of the localization assign-
ment are directly comparable with the true sensor locations.
In this work we explicitly evaluate the effectiveness of SOM
in producing maps similar to the ground truth and we focus
on reducing the localization error.

4.1 System Model
We consider a connected network with N nodes placed

at unknown locations (xi, yi)i=1,...,N . None of the nodes is
equipped with hardware for position, range or angle estima-
tion (e.g. GPS, ultrasound receivers or smart antennas) and
no assumption is made regarding availability of sensors at
each location. We only assume that every node can deter-
mine the set of its radio neighbors4 and can transmit this
information to a central point of computation. Also, during
the neighbor discovery phase, nodes use the same transmis-
sion power in the effort to ensure an approximately uniform
communication range. Once the connectivity information
4By neighbors, we mean symmetrical radio neighbors: mes-
sages from node j are received by i and vice versa.

is known, the network can be represented as an undirected
graph Gnet = (V, E), where two vertices are connected if the
corresponding nodes are radio neighbors. The graph also
serves to introduce the hop distance metric d = disthop(·, ·)
defined as the length of the shortest path connecting two
nodes.

4.2 Modified SOM Model
The core of the SOM technique is the update rule defined

in (2). In that expression, the neighborhood function h(·, ·)
takes into account the spatial arrangement of the neurons
through the map distance distmap(·, ·). Now we note that, as
long as a distance function between two elements on the map
is provided, the regular lattice can be replaced by an arbi-
trary structure of interconnected neurons. Consequently, we
modify the original SOM architecture by using the network
graph in place of the lattice of neurons and exchanging the
map distance with the hop distance disthop(·, ·). The new
neighborhood function is given by:

h(i, j) = exp

(
−disthop(i, j)2

2r(n)

)
. (4)

Having defined the new neighborhood function, the train-
ing algorithm illustrated in Section 3 can be applied to the
localization problem. In this modified SOM model, neurons
are located on the vertices of Gnet, hence we have a direct
correspondence between the neurons and the network nodes.
The weight vector associated with each neuron/node j has
the form wj = (xj , yj). This vector, initially picked at ran-
dom, will eventually contain the estimated location for the
corresponding node.

4.3 Localization Algorithm
Since the proposed algorithm is centralized, each node

needs to communicate the list of its radio neighbors to the
unit in charge of the computation. This information is neces-
sary first to build the adjacency matrix of Gnet, and then to
compute the hop-count distances between each pair of net-
work nodes, which are stored in a matrix HC with elements
given by {hc}i,j = distmap(i, j). The matrix HC is the only
input parameter required by the localization algorithm.
According to the scheme of Section 3, the weight vec-

tors (xj , yj) are initialized with random numbers and then
trained with a set of input samples. Since we are using
only connectivity information, we are free to work in a rel-
ative reference system where absolute coordinates are not
important. In light of this model, we can easily generate
the training set by sampling random points from an arbi-
trary uniform distribution (e.g. 0 ≤ x, y ≤ 1). This fact
greatly simplifies the implementation of the algorithm since
the localization task can be performed without having to
rely on any other external information (e.g. network’s phys-
ical dimensions or sensor readings like in [11]).
Algorithm 1 contains the pseudo-code of the localization

scheme. In the proposed scheme, the learning parameter
η(n) and the radius r(n) are decreased linearly with the
number of iterations (see lines 7 and 8). As a side note,
we mention that, as the radius r(n) shrinks, the level of
adaptation for neurons far from the BMU becomes negli-
gible, so the update rule (line 13) can be more efficiently
restricted to neurons within a short hop distance from the
BMU. In Section 5.4, after defining the simulation setup and
evaluation metric for the algorithm, we provide additional

considerations on the weight initialization and the number
of iterations required by the algorithm.

Algorithm 1: SOM Based Localization

Input: matrix Hc: hop count distances among nodes
Output: (xj , yj)j=1,...,N : node positions

% Initialization
1: [ηmax; ηmin] = [0.1; 0.01]
2: [rmax; rmin] = [(max

i,j
HC(i, j))/2; 0.001]

3: for all nodes n do
4: (xn, yn) = random()
5: end for

% Main Loop
6: for n = 1 : to n_iter-1 do
7: η(n) = ηmax − n(ηmax − ηmin)/(n_iter− 1)
8: r(n) = rmax − n(rmax − rmin)/(n_iter− 1)

9: (x, y) = random()
10: BMU = arg min

j
‖(x, y)− (xj , yj)‖

11: for all network nodes j do
12: h = exp

(
−Hc(BMU,j)2

2r(n)

)

13: (xj , yj)+= η(n)h[(x, y)− (xj , yj)]
14: end for
15: end for

5. SIMULATIONS
In this section, we report the results of the simulations

used to validate our localization scheme. Since we are inter-
ested in evaluating our scheme’s performance in localizing
small to medium size networks (10 - 100 nodes) with low con-
nectivity, we need to impose some constraints on how the
random topologies are generated. We refrain from purely
random deployments (coordinates selected as i.i.d. random
numbers) for two reasons: i) it is unrealistic to assume that
nodes will be positioned independently from each other and
ii) in purely random deployments, the probability to obtain
connected networks rapidly decreases to zero as we reduce
the communication range [23]. Since it is difficult to gen-
erate meaningful low-connectivity topologies, we consider a
model in which the node density is kept roughly uniform by
having the nodes positioned on the intersection points of a
grid with rows and columns spaced by a factor r. We capture
the nature of an ad hoc deployment by perturbing the po-
sitions with random noise and allowing for large placement
errors.

5.1 Simulation Parameters
The parameters used to generate our simulation are the

following:
Number of nodes, N: We simulated networks with 16,

25, 36, 64, 81 and 100 nodes.
Placement Error, σPE: The initial positions are given

by a regular grid of
√

N ×√N elements spaced by a factor
r. Node positions are obtained by perturbing the grid po-
sitions with Gaussian noise having zero mean and standard

deviation σPE = {0.1, 0.2, 0.3, 0.4, 0.5} r. Figure 3 reports
two topologies for different values of the placement error.
Communication Radius, R: The maximum communi-

cation radius is chosen as a function of the spacing factor r:
R = {1.25, 1.5, 1.75, 2.0, 2.25} r. In this first set of simula-
tions, we consider two nodes as neighbors if their distance is
less than R. We analyze the effect of irregular radio pattern
in Section 6.1.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3
4

5
6 7 8

9
10

11 12 13 14 15 16
17

18
19
20

21 22 23 24 25 26
27

28

2930

31
32

33
34 35

36 37

38
39 40

41
42

43

44

45
46 47

48 49 50

51

52
53

54
55

56
57

58
59

60
61 62 63 64

65
66

67 68
69 70

71
72 73

74
75 76 77

78 79
80

81 82
83

84 85
86

87
88

89 90

91 92 9394 95 96 97 9899 100

100 Nodes; Radius = 0.194444; Avg Connectivity = 7.06

(a) σPE = 0.2r
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1

2

3
4

5 6
7 8 9

10

11

12

13
14

15
16

17 18

19

20

21
22

2324 25

26
27 28 29

30

31
3233

34

35
36

37 38 39
40

41

42
43

44
45

46
47

48

49 50

51

5253

54

55

56

57

58

59
60

61
62

63
64

65
6667

68

69
70

71
72

73

74

75
7677

78

79
80

81
82 83

84

85
86

87
88

89

90
91 92

93
94

95

96
97

98
99

100

100 Nodes; Radius = 0.194444; Avg Connectivity = 6.76

(b) σPE = 0.5r

Figure 3: Two 100-node networks with different
placement errors.

The algorithm was evaluated by generating 50 networks
for each combination of the above parameters. After dis-
carding disconnected networks, the number of simulated to-
pologies is 9630, with an average connectivity of 6.98. The
results presented in the following sections were obtained by
executing 2000 iterations of the algorithm presented in Sec-
tion 4.3.

5.2 Virtual Coordinates
The SOM based scheme is truly an anchor-free, range-free

algorithm in the sense that it can generate virtual coordi-
nates without relying on anchor nodes or distance measure-
ments. Since the virtual coordinates cannot be compared
to the true network coordinates, we use the delivery ratio
of a greedy routing algorithm as evaluation metric. At each
hop, the routing scheme forwards the packet to the neighbor
node that is closer to the recipient of the message, according
to the rule:

next_hop = arg min
n
‖(xn, yn)− (xdest, ydest)‖ ,

where (xn, yn) are the virtual coordinates of the neighbor-
ing nodes and (xdest, ydest) are those of the destination. Al-
though the scheme is extremely unrefined (it simply gives up
if it is unable to get closer to the destination), it is still use-
ful to define a baseline for the performance achievable using
more advanced schemes (e.g. GPRS [19]). Using the sim-
ulation setup previously introduced, we have compared the
performance of our approach with the results of MDS, a pop-
ular projection technique that has been successfully applied
to the localization problem in WSNs [39, 38, 18]. Figure 4a
reports the percentage of packets successfully delivered us-
ing the greedy algorithm that operates on the basis of the
relative maps generated by SOM and MDS. The results show
that the virtual coordinates produced by both methods are
effective when used for geographical routing, with a delivery
ratio that is very close to that obtained using the true net-
work coordinates. Similarly, the length of the routing path
does not differ substantially from the case where the true
node positions are known to the routing scheme (graph is
not shown).

2 4 6 8 10 12 14
50

60

70

80

90

100

110

Network Connectivity

D
el

iv
er

y
R

at
io

 (
%

)
Greedy GeoRouting Delivery Ratio

True Coord
SOM
MDS

(a) Delivery Ratio

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Network Size

A
vg

 E
rr

(R
)

SOM − Absolute Avg. Err (R)

σ
PE

 = 10% r
σ

PE
 = 20% r

σ
PE

 = 30% r
σ

PE
 = 40% r

σ
PE

 = 50% r

(b) SOM

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Network Size

A
vg

 E
rr

(R
)

MDS − Absolute Avg. Err (R)

σ
PE

 = 10% r
σ

PE
 = 20% r

σ
PE

 = 30% r
σ

PE
 = 40% r

σ
PE

 = 50% r

(c) MDS

Figure 4: a) Delivery ratio using virtual coordinates and b,c) Average Error (R) as function of network size
for SOM and MDS.

5.3 Absolute Coordinates
Virtual coordinates can be computed solely on the basis of

connectivity information and are useful for important net-
work tasks such as packet routing. Nevertheless, there are
applications where absolute positions are required (e.g. a
WSN to support a first responder team that needs to quickly
locate the emergency scene). In order to convert relative
node positions into absolute coordinates, at least three an-
chor points are needed for the bidimensional case. In this
section, we have used four anchor nodes on the perimeter
of the map to resolve rotational, translational and flipping
ambiguities and align the map to an absolute coordinate
system. As a result of this transformation, the computed
positions can be compared with the true positions and the
localization error can be expressed quantitatively.
Figures 4b and 4c show the error of SOM and MDS for

different network sizes and placement errors. The error is
expressed as a value relative to the communication range
R. As expected, the accuracy of the localization schemes
decreases as the placement error on the map increases. We
note that while MDS works by actively using the hop-count
distances between each pair of nodes, and thus it works bet-
ter for larger and denser networks (where the number of
constraints is higher), SOM is based on localized constrains
and works better for smaller networks.

5.4 Weight Initialization and Convergence
Having defined the simulation parameters and the local-

ization error, we analyze the effect of weights initialization
and number of iterations on the algorithm’s performance.
Weight initialization influences both the convergence speed
and the localization accuracy. In Sections 3 and 4 we stated
that weights are initialized at random (usually with samples
from the input set or other small values). In our simulations
we have verified that this approach works well on average,
but there are few occurrences where the final error is large
(> 1.0R). Figure 6 shows: a) a random topology b) the ini-
tial weight configuration and c) a case where the localization
algorithm produced a substantially acceptable result. On
the other hand, Figure 6d shows an occurrence where the
algorithm failed to converge to an acceptable solution for
the same network topology. Although the relative positions
of the majority of nodes are correct with respect to each
other, the network is “twisted”, with the nodes of the upper

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3
4

5

6 7 8

9

10

11

12 13

14

15

16 17
18 19

20

21

22 23

24
25

25 Nodes; Radius = 0.412500; Avg Connectivity = 5.36

(a) Ground Truth
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1

2
3

4
5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

25

25 Nodes; Radius = 0.412500; Avg Connectivity = 5.36

(b) Random Init.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1
2

3
4

5

6 7
8

9 10

11 12
13 14

15

16
17

18
19

20

21
22

23
24

25

25 Nodes; Radius = 0.412500; Avg Connectivity = 5.36

(c) Conv. OK
−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

12

3
4

5

67
8

9
10

1112
13

14 15

16 17
18

19
20

21
22 23

24
25

25 Nodes; Radius = 0.412500; Avg Connectivity = 5.36

(d) Conv. ERR

Figure 6: Localization convergence.

half in inverse order respect to the lower half. Such problem
is caused by unfortunate initial weight configurations that
determine a topological flipping of large blocks of nodes. In
our experiments we found that the occurrence of such cases
can be greatly reduced by initializing the weights with values
lying on a straight line. The initialization rule is given by:

(xi, yi) =
Hc(o, i)

max
j

Hc(o, j)
, (5)

where o identifies a node placed on the perimeter of the map.
According to the equation, weights are initially aligned along
a line starting from (0, 0), the position of node o, and ending
at (1, 1), the position of the node with maximum hop count
distance from o. This scheme, which partially sorts the ini-
tial node positions, helps in reducing the final localization
error as well as the occurrence of “twisted” networks. In our
simulations we found that the proposed solution reduces the
average localization error by about 43% with respect to ran-
dom initializations, while the pergentage of networks with
final error > 0.5R is only 10.6%, against 31.5% for random
initialization and 20.12% for MDS.

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Network Connectivity

A
vg

 E
rr

 (
R

)

Avg. Err (R)

MDS
SOM
SOM

3
A

SOM
4
A

(a) DOI = 0.0

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Network Connectivity

A
vg

 E
rr

 (
R

)

Avg. Err (R)

MDS
SOM
SOM

3
A

SOM
4
A

(b) DOI = 0.2

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Network Connectivity

A
vg

 E
rr

 (
R

)

Avg. Err (R)

MDS
SOM
SOM

3
A

SOM
4
A

(c) DOI = 0.4

Figure 5: Average Error (R) as function of network connectivity for different values of radio pattern DOI.

The localization accuracy also depends on the number of
iterations used in the algorithm. Figure 7 reports the av-
erage localization error for a test set containing 100 topolo-
gies generated using the simulation parameters defined in
Section 5.1. We note that error rapidly decreases during the
first 500 to 1000 iterations and then only reduces marginally.

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1
Avg. Err(R) vs. N. of Iterations

Iterations

A
vg

. E
rr

 (
R

)

Random Weights
Straight Line

Figure 7: Average Error (R) as function of the num-
ber of iterations (results averaged over 100 random
topologies).

5.5 Exploiting Anchor Information
In previous sections, the maps generated by SOM and

MDS have been scaled and oriented by using the position of
four anchor nodes. However, the structure of our approach
is such that anchors’ information (if available) can be ex-
ploited during the training phase of the map, with valuable
effects on the final results. The modification to the algo-
rithm involve two points: i) coordinates of anchor nodes
are never updated (since they are already correct) and ii)
whenever an anchor node is elected as BMU, the sample at
current iteration is replaced with the anchor’s position. The
two modifications have the effect that anchor nodes not only
remain in their position, but they also facilitate the map or-
ganization during the initial iterations. In addition, if the
number of anchors is equal or greater than three, the method
generates absolute coordinates without needing any further
transformations. We have evaluated the performance of the
algorithm using a priori knowledge of three and four anchor
nodes (SOM_3A and SOM_4A respectively). The results

show a substantial improvement in the localization accuracy:
using four anchor nodes during the computation (SOM_4A)
reduces the average localization error by about 30% with re-
spect to the basic SOM algorithm, while the percentage of
networks with localization error >0.5% drops to only 3.15%
of the total cases. Figure 5a reports the results for various
values of network connectivity. The plot shows that the
SOM algorithm significantly outperforms MDS when the
network connectivity is low, with an average error reduc-
tion of 43% for networks with connectivity between 3 and
10 (using SOM_4A). The explanation is that SOM is “less
aggressive” in the use of node distances. The effect of the
neighborhood function h(·, ·) is such that the distance con-
straints among nearby sensors are weighted more than those
of nodes several hops away. Consequently, the SOM scheme
is less sensitive to condition of low connectivity, where high
values of the hop count distance between two nodes do not
necessarily imply that nodes are far from each other.

6. ANISOTROPIC DEPLOYMENTS
Our localization scheme has been derived under the as-

sumptions of approximately uniform deployment and com-
munication range. In this section we use simulations to eval-
uate the effect of irregular radio patterns and anisotropic
deployment on the algorithm’s performance.

6.1 Irregular Radio Pattern
The results reported in the previous section were obtained

assuming an idealized radio model, where two nodes are
neighbors iff their distance is equal to or less than the com-
munication range R. This assumption is very strong and
does not take into account the nature of radio propagation
in the space. To get an insight on the effect of multi-path,
scattering and shadowing on the transmission range, we re-
peated experiments using a less ideal radio model. In par-
ticular we took into account the influence of an additional
parameter, the Degree of Irregularity (DOI) with values 0.2
and 0.4. A DOI equal to 0.4 means that the effective trans-
mission range for each sensor is uniformly drawn from the
interval [0.6R - 1.4R], where R is the average radio range.
In Figures 5b and 5c we report the experimental results for
DOI = 0.2 and DOI = 0.4, showing that the localization er-
ror does not significantly increase in conditions of irregular
radio pattern (especially in the SOM_4A modification).

6.2 Anisotropic Networks
In addition to considering irregular radio patterns, we

have simulated networks with anisotropic layouts resulting
from the presence of large obstacles (e.g. buildings) in the
region of the deployment. It is known that under such sce-
narios MDS, similar to the case of low connectivity, does not
perform well. The reason is that MDS uses the hop count as
a distance measure between each pair of nodes. While this
approach works well when the path connecting two nodes
lies approximately on a straight line, it generates large er-
rors in the presence of obstacles. In this case two nodes can
be physically close even if their hop distance is large.
The large error in the case of anisotropic networks has mo-

tivated alternative approaches where MDS is used to com-
pute small local maps that are then stitched together into a
global map [39, 18]. Although this approach can be useful
to solve the problem in a distributed manner, the process
of map stitching greatly increases the complexity of the so-
lution and is susceptible to large errors when the network
connectivity is low. It would be useful to have a scheme
capable of localizing irregular networks without having to
partition the map and encumber the complexity of map
stitching. To validate the performance of the SOM algo-
rithm we have evaluated anisotropic deployments obtained
by randomly placing the nodes around few obstacles. Two
sample topologies are represented in Figures 8a and 8b.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4
5 6

7
8 9

10

11 12 13 14
15

16
1718

19
20 21 2223

24
25

26 27

28 29 30

31 32
33

34
35

36

37

38

39

40 41
42

43 44 45

46

47
48

4950

51

52
53

54

55
56 57

58 59

60

61 62 63

64

65
6667 68 69 70 71 72

72 Nodes ; Radius = 0.225000; Avg Connectivity = 7.44

(a) “C” deployment

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1
2

3 4 5 6
7

8
9 10 11

1213
14 15

16
17

18
19 20

21 22 23

24
25

26

27 28
29

30 31
32

33
34

35
36 3738

39
40

41
42 43

4445
46 47

48

49 50
51 52 53

54
55

56

57

58
59

59 Nodes ; Radius = 0.225000; Avg Connectivity = 5.73

(b) “W” deployment

Figure 8: Anisotropic networks.

SOM and MDS were tested by simulating 200 random
networks for both the “C” and “W” shaped maps with con-
nectivity between 4.6 and 6.8. As in the previous simu-
lation, we evaluated the average error after orienting the
map using four anchor points on the perimeter. For the
MDS localization scheme, the simulation results confirmed
our expectation: the average final error was large in both
cases, 1.56R for the C-shaped and 1.32R for the W-shaped
network. The SOM algorithm did not suffer the same prob-
lem and produced results with the accuracy comparable to
the case of uniform networks: 0.33R for the C-shaped net-
work and 0.38R for the W-shaped one, with an average error
reduction of 75% with respect to MDS. As explained previ-
ously, the better results are due to the fact that SOM mainly
exploits the constraints derived by neighbors nodes that are
placed few hops away from each other; consequently, it does
not incur in large errors trying to relate the position of nodes
that are several hops away. Figure 9 presents four sample
maps generated by the MDS and SOM algorithm for the “C”
and “W” topologies to give a qualitative illustration of the
results.

7. COMPUTATIONAL COMPLEXITY
Recently, several research efforts have been directed to-

ward the study of distributed localization algorithms. This
interest is motivated by the fact that centralized compu-
tation is not viable in the following circumstances: 1) the
communication overhead to transfer the input data to a cen-
tral unit is too high, 2) none of the devices in the system
possess the computational resources to compute the whole
solution, 3) the result is critical and introducing a single
point of failure puts the reliability or security of the system
in jeopardy. In this section we analyze the overhead of our
scheme, showing that the SOM approach, although central-
ized, does not suffer from the above mentioned drawbacks
and is suitable for highly constrained deployments.
The algorithm operates on the basis of connectivity infor-

mation, therefore each sensor needs to communicate the set
of its radio neighbors to the unit in charge of the computa-
tion. Assuming that node IDs are coded using two bytes (up
to 65536 nodes), the information can be transmitted using
a fairly small size radio messages. For example, the average
connectivity of the networks in our simulations was less than
7, thus, on average, only 14 bytes need to be transmitted by
each node. Since the amount of data can be further reduced
by means of data aggregation techniques, the overhead to
transfer the initial information to the central node does not
pose a problem for many cases of practical interest.
Having received the neighbor sets, the data is used to gen-

erate the adjacency matrix of the network graph requiring
[N(N − 1)/2]/8 bytes5 and then to compute the table Hc

with the hop count distances between nodes. The solution
can be obtained by repeating N executions of the popu-
lar Dijkstra’s algorithm or using the Floyd’s scheme. The
complexity is O(N3) in both cases, while the table needs
enough storage space for N(N − 1)/2 elements. The mem-
ory requirements for this table can be reduced by taking into
account the maximum hop count distance between any two
nodes (i.e. the network diameter). In our simulations, the
average diameter was equal to 6.19 with a maximum value
of 16. Using 4 bits to code the hop-count distances6, the
size of the table is reduced to N(N − 1)/4 bytes of mem-
ory. Finally, we need to reserve the memory space to hold
the coordinates of the sensor nodes (i.e. the SOM weights).
Assuming, that each coordinate is represented with 2 bytes,
the total occupation is 4N bytes. As for the computational
complexity of our approach, the iterative solution allows a
trade-off between accuracy and execution time (cf. Section
5.4). Each iteration determines the BMU (requiring N com-
parisons), and then applies the update rule (2) to the map
weights. Considering that the radius of the neighborhood
function shrinks from a value initially equal to the network
radius and then goes to zero, the average number of weight
updates is N/2.
While the algorithm executes in a few second on a PC, we

have implemented a TinyOS [27] version to test the scheme
on WSN nodes. The code was executed using TelosB [36],
a low cost, commercially available sensor node. The board

5We recall that the graph is undirected, so both the adja-
cency matrix and the hop count table are symmetric.
6We note that even if some hop count distance exceeds the
upper limit allowed, replacing this value with the upper limit
does not have a noticeable impact on the algorithm because
the interactions between units far from each other are very
weak.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1

2 3

4 5
6

7

8

9

10

11 12

13

14
15

16

1718

19 20 21 2223
24

25 26 27

28
29 30

31 32
33

34 35

36

37

38

39
40

4142

43

44
4546

47

48

49

50

51

52
53

54

55 56 57

58
59

60

61

6263

64

65
6667 68 69 70

71

72

72 Nodes; Radius = 0.225000; Avg Connectivity = 7.44

(a) SOM: “C” net
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3
4

5
6

7 8

910 11

12

1314

15
16

17 18

19

20 21
22

23 24

25

26
27 28

29
30

31

32

33

34
35

36

37

38

39

40

4142

4344

45

46

47

48
49

5051

5253

5455

5657

58
59 60

60 Nodes; Radius = 0.250000; Avg Connectivity = 6.67

(b) SOM: “W” net
−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1

2
3

4 5
6

7

8 9

10

11
12

13
14

15

16 1718

19
20

21
2223

24 25

26

27

28 2930
31

32

33 34

35

36

37
38

39

40 4142

43

44

45

46
47

48
49

50

5152

5354

55 56
57

58 59 60

61

6263

64

65
6667 68

69

70
71

72

72 Nodes; Radius = 0.225000; Avg Connectivity = 7.44

(c) MDS: “C” net
−1 −0.5 0 0.5 1 1.5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1
2

3

4

5

6

7

8

9
10

11

12

13

14

15
16

17

18 19 20
21 22

23

24
25 26

27

2829 30

31

32
33

34 35
36

37

38

39
40

41
42

43
44

45

46

47

48

49

50

51

5253

54

55

56
57

58

59

60

60 Nodes; Radius = 0.250000; Avg Connectivity = 6.67

(d) MDS: “W” net

Figure 9: Sample results for anisotropic layouts: in this case, the SOM algorithm reduces the average
localization error of 75% with respect to MDS.

Table 1: Memory requirements and execution time
of the SOM algorithm on a TelosB node.
N. Nodes Memory Exec. Hc Exec. 1000 iter.

36 0.42 KB 1 sec 62 sec
64 1.48 KB 6 sec 102 sec
100 3.42 KB 22 sec 156 sec

is equipped with Texas Instrument MSP430 F1611, a low
power 16-bit RISC microcontroller featuring 10KB of RAM,
48KB of code memory and an internal oscillator working at
the frequency of 8MHz. The algorithm was implemented
as reported in Section 4.3, with the only exception that the
Gaussian neighborhood function was replaced with a trian-
gular function, which produces similar results using much
less computation. Table 1 reports the memory occupation
of the data structures described above and the execution
time to compute the table Hc and then to perform 1000
iterations of the localization algorithm.
As can be seen from the table, the limited hardware re-

sources of an inexpensive sensor node are sufficient to gen-
erate a solution within a limited amount of time even for
networks of 100 nodes. During the computation, the radio
can be turned off and the microcontroller draws only few
milliamp of current, with negligible impact on the energy
budget of the sensor node. Since the algorithm runs with
limited overhead on the same hardware used to implement
the sensing task, the system reliability can be improved by
simply running the computation on a few back-up units.

8. RELATED WORK
Several localization techniques have been proposed in the

past years. Although many schemes use TDOA (Time Dif-
ference of Arrival), Angle of Arrival (AoA) or analysis of the
RSSI signal to obtain constraints on the position of neigh-
boring nodes, some schemes are range-free and use connec-
tivity information only. One of the first examples of such
a technique is the “GPS-Less” [8] positioning system, where
nodes use a centroid approach to estimate their position by
averaging the coordinates of nearby anchor nodes. In the
“DV-Hop” scheme [33], anchor nodes flood the network with
message beacons that are used by each node to determine the
minimal hop count distances. Using an estimate of the av-
erage hop length, this information is used to obtain distance
values and perform multi-lateration. A similar approach is
proposed in [32], but in this case the estimation of the av-

erage hop length benefits from a priori knowledge of the
node density through the use of the well known Kleinrock
and Slivester formula to determine the hop size. The APIT
scheme is proposed in [14] and is directly compared to [8, 33,
32] using extensive simulations. The result shows that all
the schemes previously mentioned perform well only when
a high number of anchor nodes are present and network
density is high. For uniform topologies with connectivity
equal to 8, each nodes need to be able to receive the bea-
con messages from more than twelve anchor nodes to reduce
the localization error under 1.0R. Multi-Dimensional Scal-
ing, which we use for direct comparison in our simulations,
was originally used in [39]. The method has been succes-
sively extended to work in a distributed fashion [38, 18],
motivated in part by the poor performance with anisotropic
layouts (cf. Section 6). SOMs have been extensively used
in a variety of applications [20, 35]. In a recent work, Ertin
and Priddy [11] use SOM to solve the localization prob-
lem in Wireless Sensor Networks. Their model is based on
the assumption that network nodes can sense a common
phenomena (e.g. acoustic or seismic) at synchronized time
steps. A further assumption is that the correlation between
sensor readings is a function only of the distance between
nodes: E[zizj] = f(‖xi − xj‖). Under these conditions, sen-
sor readings from all the nodes are first accumulated to form
the training set, and then, after the SOM model has been
trained, are used to sort the nodes according to their prox-
imity to a set of virtual sensors placed on a regular grid.

9. CONCLUSIONS
In this paper we proposed a centralized algorithm to solve

the localization problem for WSNs. The algorithm, which
operates on the basis of connectivity information, is able
to produce accurate results in situations where other ap-
proaches have a poor performance: networks with low con-
nectivity and irregular topologies. In addition, the light-
weight implementation of the scheme is suitable for resource-
poor nodes commonly found in WSN applications. Future
work will investigate a distributed version of the algorithm
and an extension to exploit angle information derived from
directional antennas.

10. ACKNOWLEDGMENTS
This research work was partly funded by MIUR-Interlink,

INT01ACA89 program. We would like to thank Guofeng
Deng, Kari Torkkola, Jie Gao and anonymous reviewers for
their helpful comments.

11. REFERENCES
[1] F. Adelstein, S. Gupta, G. Richard, and L. Schwiebert.

Fundamentals of mobile and pervasive computing.
McGraw-Hill New York, 2005.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. Wireless sensor networks: a survey. Computer
Networks, 38(4):393–422, 2002.

[3] A. Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat,
V. Naik, V. Kulathumani, H. Zhang, H. Cao,
M. Sridharan, et al. Exscal: Elements of an extreme scale
wireless sensor network. IEEE RTCSA, 2005.

[4] BB Electronics and Sensicast. August 2005 wireless survey
results. http://www.bb-elec.com/wirelesssurvey/.

[5] Berg Insight AB. Mobile personal navigation services (2006
Tech Report). http:
//www.gii.co.jp/english/ber39982-personal-navi.html.

[6] E. Bonabeau and F. Henaux. Self-Organizing Maps for
Drawing Large Graphs. Information Processing Letters,
67(4):177–184, 1998.

[7] H. Breu and D. Kirkpatrick. Unit disk graph recognition is
NP-hard. Computational Geometry: Theory and
Applications, 9(1-2):3–24, 1998.

[8] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low-cost
outdoor localization for very small devices. Personal
Communications, IEEE, 7(5):28–34, 2000.

[9] M. Cottrell, J. Fort, and G. Pages. Two or three things
that we know about the Kohonen algorithm. Proc.
ESANN, European Symp. on Artificial Neural Networks,
pages 235–244, 1994.

[10] K. Delin. The Sensor Web: A Macro-Instrument for
Coordinated Sensing. Sensors, 2(1):270–285, 2002.

[11] E. Ertin and K. Priddy. Self-localization of wireless sensor
networks using self-organizing maps. Proceedings of SPIE,
5803:138, 2005.

[12] U. Gerecke and N. Sharkey. Quick and dirty localization
for a lost robot. Computational Intelligence in Robotics
and Automation, 1999. CIRA’99. Proceedings. 1999 IEEE
International Symposium on, pages 262–267, 1999.

[13] D. Goldenberg, A. Krishnamurthy, W. Maness, Y. Yang,
A. Young, A. Morse, A. Savvides, and B. Anderson.
Network localization in partially localizable networks.
INFOCOM 2005. 24th Annual Joint Conf. of the IEEE
Computer and Communications Societies. Proceedings
IEEE, 1, 2005.

[14] T. He, C. Huang, B. Blum, J. Stankovic, and
T. Abdelzaher. Range-free localization schemes for large
scale sensor networks. Proceedings of the 9th annual
international conference on Mobile computing and
networking, pages 81–95, 2003.

[15] J. Hightower and G. Borriello. Location systems for
ubiquitous computing. Computer, 34(8):57–66, 2001.

[16] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: A scalable and robust communication paradigm
for sensor networks. Proceedings of the ACM/IEEE
International Conference on Mobile Computing and
Networking, pages 56–67, 2000.

[17] J. Janet, R. Gutierrez, T. Chase, M. White, and J. Sutton.
Autonomous mobile robot global self-localization using
Kohonen and region-feature neural networks. Journal of
Robotic Systems, 14(4):263–282, 1997.

[18] X. Ji and H. Zha. Sensor positioning in wireless ad-hoc
sensor networks using multidimensional scaling.
INFOCOM 2004. Twenty-third Annual Joint Conf. of the
IEEE Computer and Communications Societies, 4, 2004.

[19] B. Karp and H. Kung. GPSR: greedy perimeter stateless
routing for wireless networks. Proceedings of the 6th annual
international conference on Mobile computing and
networking, pages 243–254, 2000.

[20] S. Kaski, J. Kangas, and T. Kohonen. Bibliography of
self-organizing map (SOM) papers: 1981–1997. Neural
Computing Surveys, 1(3&4):1–176, 1998.

[21] T. Kohonen. Self-organized formation of topologically
correct feature maps. Biological Cybernetics, 43(1):59–69,
1982.

[22] T. Kohonen. Things you haven’t heard about the
self-organizing map. Neural Networks, 1993., IEEE
International Conference on, pages 1147–1156, 1993.

[23] B. Krishnamachari, S. Wicker, R. Bejar, and M. Pearlman.
Communications, information and network security, ch.
Critical Density Thresholds in Distributed Wireless
Networks, 2002.

[24] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Unit disk
graph approximation. Proceedings of the 2004 joint
workshop on Foundations of mobile computing, pages
17–23, 2004.

[25] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger.
Geometric ad-hoc routing: of theory and practice.
Proceedings of the twenty-second annual symposium on
Principles of distributed computing, pages 63–72, 2003.

[26] K. Langendoen and N. Reijers. Distributed localization in
wireless sensor networks: a quantitative comparison.
Computer Networks, 43(4):499–518, 2003.

[27] P. Levis. TinyOS: An Open Operating System for Wireless
Sensor Networks (Invited Seminar). Proceedings of the 7th
International Conference on Mobile Data Management
(MDM’06)-Volume 00, 2006.

[28] J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris.
A scalable location service for geographic ad hoc routing.
ACM Press New York, NY, USA, 2000.

[29] Z. Lotker, M. de Albeniz, and S. Perennes. Range-Free
Ranking in Sensors Networks and Its Applications to
Localization. Proceedings of 3 rdAd-Hoc, Mobile, and
Wireless Networks, pages 158–171, 2004.

[30] B. Meyer. Self-organizing graphs-a neural network
perspective of graph layout. Proceedings of the 6th
International Symposium on Graph Drawing, pages
246–262, 1998.

[31] T. Moscibroda, R. O’Dell, M. Wattenhofer, and
R. Wattenhofer. Virtual coordinates for ad hoc and sensor
networks. Proceedings of the 2004 joint workshop on
Foundations of mobile computing, pages 8–16, 2004.

[32] R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a
global coordinate system from local information on an ad
hoc sensor network. Proc. of the 2nd int. symposium on
Information Processing in Sensor Networks (IPSN), 2003.

[33] D. Niculescu and B. Nath. DV Based Positioning in Ad
Hoc Networks. Telecommunication Systems, 22(1):267–280,
2003.

[34] R. O’Dell and R. Wattenhofer. Theoretical aspects of
connectivity-based multi-hop positioning. Theoretical
Computer Science, 344(1):47–68, 2005.

[35] M. Oja, S. Kaski, and T. Kohonen. Bibliography of
self-organizing map (SOM) papers: 1998-2001 addendum.
Neural Computing Surveys, 3(1):1–156, 2003.

[36] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling
ultra-low power wireless research. Proc. of the 4th int.
symposium on Information processing in sensor networks
(IPSN), 2005.

[37] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica.
Geographic routing without location information.
Proceedings of the 9th annual international conference on
Mobile computing and networking, pages 96–108, 2003.

[38] Y. Shang and W. Ruml. Improved MDS-based localization.
INFOCOM 2004. Twenty-third Annual Joint Conf. of the
IEEE Computer and Communications Societies, 4, 2004.

[39] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz.
Localization from mere connectivity. Proceedings of the 4th
ACM international symposium on Mobile ad hoc
networking & computing, pages 201–212, 2003.

[40] J. Stafford, editor. Precision Agriculture - an International
Journal on Advances in the Science of Precision
Agriculture. Springer, 1999-2006.

http://www.bb-elec.com/wirelesssurvey/
http://www.gii.co.jp/english/ber39982-personal-navi.html
http://www.gii.co.jp/english/ber39982-personal-navi.html

	Introduction
	The Problem
	Self-Organizing Maps
	Localization using SOMs
	System Model
	Modified SOM Model
	Localization Algorithm

	Simulations
	Simulation Parameters
	Virtual Coordinates
	Absolute Coordinates
	Weight Initialization and Convergence
	Exploiting Anchor Information

	Anisotropic Deployments
	Irregular Radio Pattern
	Anisotropic Networks

	Computational Complexity
	Related Work
	Conclusions
	Acknowledgments
	References

