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ABSTRACT
Received Signal Strength (RSS) data collected within a wire-
less network can be used to obtain either range estimates or
connectivity information. Both approaches lead to localiza-
tion schemes that require no additional hardware. It is not
clear, however, when a range-based scheme should be used
in favor of a connectivity-based one. We use analysis of the
Fisher information and the Cramér–Rao Bound (CRB) to
characterize the error of both approaches. We find the exis-
tence of a critical connectivity value, below which the use of
RSS data for range-based localization is counter-productive.
We show that an approximation of the critical connectivity
value can be computed as a function of the network size and
the parameters of the propagation model.

Categories and Subject Descriptors
C.2 [Computer Communication Networks]: Network
Protocols.

General Terms
Algorithms, Performance, Theory.

Keywords
Localization, Signal Strength, RSS, Ranging, Connectivity,
Fisher Information, Cramér–Rao Bound, Approximation.

1. INTRODUCTION
The Received Signal Strength (RSS) values measured by

most radio transceivers can be used to estimate the dis-
tance between nodes and implement range-based localiza-
tion schemes (e.g. [11]). These schemes are popular because
no additional hardware is required on the nodes to local-
ize. Their accuracy, however, is often questioned. Given
the variability of the wireless channel, range estimates using
RSS are inaccurate by nature and can lead to large localiza-
tion errors. For this reason, several authors have proposed
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range-free schemes that implicitly apply binary quantiza-
tion to the RSS data, and localize the nodes using only the
connectivity information (e.g. [6, 12]).
Should the RSS data be used for range estimates, or should
they be converted into connectivity information? Which ap-
proach works better? We answer these questions by using a
parameter estimation approach and by comparing the the-
oretical limits that bound the error in the two cases [8, 9].
Using this framework, theoretical tools such as the Fisher
information and the Cramér–Rao Bound (CRB) allow us to
investigate the problem on a general basis, without limiting
our analysis to any particular scheme. The aim of our work
is to provide a practical rule to help system designers to
identify the conditions under which a localization approach
works better than the other. Despite the attention received
by RF-based localization schemes, to our knowledge, this is
the first time that this problem has been addressed.
In Section 2 we use a simple localization example to intro-
duce the Fisher information for RSS and connectivity data
when the signal strength follows the log-normal shadowing
model. In Section 3, we use the CRB analysis to characterize
the error when localization involves multiple nodes deployed
as a network. By comparing the CRB for the two cases, we
show the existence of a critical connectivity (ccr) value. For
a network with connectivity below ccr, the minimum error
achievable by a range-free scheme is potentially lower than
the error of one that uses RSS range estimates. The opposite
is true for network with connectivity greater than ccr.
Knowledge of the ccr value defines the choice of the ap-
proach to use. However, computing this value requires know-
ing the true node positions. After studying the properties
of the ccr value, in Section 3.4 we investigate how to ap-
proximate it. Using extensive simulations we show that the
ccr value can be approximated with sufficient accuracy by
using a function of the network size and the parameters of
the propagation model. We finally present a test case where
the approximation found is used to choose between a range-
based and a range-free scheme; analysis of the localization
error supports the choice made by using our results.

2. 1D NODE LOCALIZATION
Suppose two devices are placed as in Figure 1, and we
want to compute the position of node 1, or equivalently its
distance d from the origin. We will estimate d using two
solutions: one that uses RSS value collected between the
two nodes, and another that converts them into connectivity
data. After describing the propagation model for the RF
signal, we will compare the two approaches.



Node 0 Node 1

x = 0 d =?

Figure 1: The distance of node 1 from the origin has
to be estimated using radio messages.

2.1 Propagation Model
We assume that the RSS values follow the log-normal

shadowing model, a propagation model widely used in link
budget analysis [10]. Let {z1, z2, z3, . . .} be the set of RSS
measurements collected between the two nodes, and let p01
be the average1 of such values. If the RSS is measured in
dB or dBm, then p01 is the outcome of a random variable
P01 with normal distribution:

P01 ∼ N (P̄r(d), σdB)
P̄r(d) = P0 − 10np log10(d/d0). (1)

where P0 is the received power measured at reference dis-
tance d0, and np is the path loss exponent. The standard de-
viation σdB models the variability measured between pairs
of nodes with the same separation distance, but placed in
different locations.

2.2 Range-Based Localization
The first solution is to estimate d using the average RSS

measured between the nodes. Having assumed the model
(1), we can estimate d using, for example, the Maximum
Likelihood Estimator (MLE):

d̂ML = d010
(P0−p01)/10np . (2)

Assuming that the path loss exponent np is known, the
MLE provides a simple solution to convert RSS values into
range estimates. Using (2), we can also evaluate the esti-
mation error. If the measurement is p01=P̄r(d)+ δ, where δ
is a sample from the random variable Δ ∼ N (0, σdB), then
the error is:

e = d̂ML − d = d
(
10

−δ
10np − 1

)
. (3)

In absence of shadowing effects (δ = 0), the MLE produces
the correct estimates (i.e. e = 0). When δ �= 0, the error is
proportional to the distance between the nodes; therefore,
range estimates for nodes with a large separation distance
are less accurate than range estimates for nodes that are
close to each other.

2.3 Connectivity-Based Localization
The second option is to estimate d using connectivity data.

Using the approach proposed by Patwari and Hero III [9], we
obtain connectivity measurements by comparing the average
RSS against a threshold Pth. The two nodes are “connected”

1Averaging the measured values reduces part of the vari-
ability caused by multi-path propagation of the RF signal
impinging on static and moving obstacles.

if p01 ≥ Pth or “disconnected” in the other case. According
to this binary quantization, the connectivity is described by
a random variable C01:

C01 =

{
0 if p01 < Pth (nodes disconnected)

1 if p01 ≥ Pth (nodes connected).
(4)

A connectivity-based scheme will use the intuitive assump-
tion that two nodes are “close” if C01 = 1, and “far” if
C01 = 0. The advantage of this approach is that the position
can be estimated without knowing the propagation model’s
parameters. On the down side, computing an actual esti-
mate for d is not straightforward. For example, the MLE
produces trivial values that are of scarce utility: d̂ML = 0
when C01 = 1, and d̂ML = +∞ when C01 = 0.
In practice, some other solution will be used to translate
the values (4) into actual distance estimates. Interestingly,
as shown in the following sections, assuming a particular
scheme is not necessary. Localization approaches using RSS
and connectivity data can be compared on a general basis
using the Fisher information and the CRB.

2.4 Fisher Information
The Fisher information (F ) measures the amount of in-
formation that a random variable carries about an unknown
parameter. Here, the random variables are the ones defined
by (1) and (4), while the parameter to estimate is d. The
inverse of the Fisher information, known as the Cramér–Rao
Bound, is the minimum variance that can be achieved when
estimating d using any unbiased estimator:

Var{d̂} ≥ 1

F (d)
. (5)

By comparing the Fisher information for RSS and connec-
tivity measurements, we can identify under which conditions
the minimum theoretical error for one approach is lower than
the other. In turn, this allows us to select which localization
technique can potentially produce the lowest error.

2.4.1 RSS Measurements
Details to compute the Fisher information are presented
in [8] for RSS estimates and in [9] for proximity information
in the 2D case. For the two nodes in Figure 1, the Fisher
information associated with RSS measurements is:

Frss(d) = K
2
c
1

d2
, (6)

where the constant Kc = (10np)/(σdB log 10) depends on
the parameters of the propagation model.
Figure 2a shows Frss as a function of d for different values
of np and σdB. The plots describe what was already seen
in (3): the amount of information available to estimate d
decreases for increasing values of the distance and increas-
ing values of the ratio σdB/np. In particular, when σdB/np
increases, the estimates become less accurate because the
variability caused by RF shadowing “blurs” the RSS mea-
surements, decreasing their dependence on the distance.

2.4.2 Connectivity
In the case of connectivity data, the Fisher information
depends not only on the distance between the two nodes,
but also on the value of the threshold Pth used in (4). To
present an expression of F similar to (6), the value Pth is
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Figure 2: Fisher Information for RSS and connectivity measurements.

converted into a threshold distance:

dth = d010
(P0−Pth)/(10np). (7)

Using dth, which is the MLE for Pth, the Fisher information
can be written as:

Fconn(d, dth) = K
2
c
1

d2
Ir(d, dth). (8)

The equation above show that Fconn is equal to Frss multi-
plied by an additional term Ir. The term Ir depends on the
ratio between d and the threshold distance dth:

Ir(d, dth) =
2

π

exp
[−K2c log(d/dth)2]

1− erf [Kc log(d/dth)/√2]2 . (9)

Figure 2b shows Fconn as a function of dth when d = 5m
for different values of σdB/np, and Figure 2c shows Fconn for
increasing distances d. The Fconn value always peaks when
dth = d. Connectivity measurements reach the maximum
information content when Pth corresponds to a threshold
distance dth equal to the true node distance (which is un-
known). If dth = d, the probability of detecting the node
as connected is 0.5, and Fconn is approximately 37% lower
than Frss. In fact, Ir(d, dth) = 2/π ∼= 0.63 for dth = d.
2.4.3 Discussion
Comparison between Frss and Fconn shows that RSS mea-

surements always carry greater information content than
connectivity ones. However, this is only true as long as the
nodes are within the radio range of each other.
When nodes are within each other’s radio range, they can

successfully exchange radio messages and p01 can be com-
puted by averaging the values {z1, z2, z3, . . .}. The value p01
can be used for range estimates using (2), or it can be used
to derive connectivity information using (4). Depending on
the choice of Pth, two nodes that are within each other’s
radio range can be considered connected or disconnected.
On the other hand, when nodes are out of range, they

will not be able to communicate and no RSS information
will be collected. In this case, a range-based approach such
as the MLE will not be able to produce any position estimate
(i.e. Frss= 0). Instead, if a connectivity scheme is used, the
occurrence of nodes that are out of range can be associated
to the value C01 = 0, therefore a position estimate is still
possible (Fconn> 0).
The diverse nature of the measurements implies a funda-

mental difference between the two approaches. RSS ranging

is more accurate when nodes are in the radio range of each
other, but a connectivity scheme is naturally suited to local-
ize nodes that are unable to communicate.

3. NETWORK LOCALIZATION
In typical applications, localization involves computing
the positions of multiple nodes deployed as a network. For
a system with N nodes in a 2D space, the information to es-
timate the node positions is measured by a 2N × 2N matrix
known as the Fisher Information Matrix (FIM)2 [8, 9]. The
CRB, which is obtained by inverting the FIM, sets a lower
bound on the covariance matrix of the unknown parameters.
In our analysis, we use CRBrss and CRBconn to denote the
average value of the 2N coordinates’ standard deviation.

3.1 CRB Analysis
Figure 3a shows the CRBrss and CRBconn computed for
a 100 node network with four anchor nodes on the corners
of the deployment area. We consider different connectivity
values obtained by increasing the communication range of
each node.
As shown by the plots, the CRBrss monotonically de-
creases with the connectivity. In the case of RSS ranging,
a given connectivity value, say ten, means that each node
is in the radio range of other ten nodes; hence, ten range
estimates are available to compute its position. As the con-
nectivity increases, the number of measurements increases,
causing the CRBrss to decrease.
Differently from the CRBrss, the CRBconn does not de-
crease with the connectivity. In fact, in the case of connec-
tivity data, a connectivity value equal to ten means that
the average RSS of ten nodes are above the threshold Pth.
The remaining 89 nodes are considered disconnected, either
because their signal strength is below the threshold or be-
cause they are out of range. In any case, the number of
measurements available is equal to 99. Therefore, increas-
ing the connectivity does not necessarily cause the CRBconn
to decrease.
To understand the effect of different dth values on the
CRBconn, we recall that Fconn reaches its maximum when
the distance between the nodes is approximately equal to

2The FIM’s elements are similar to (6) and (8), but the
coordinates (xi, yi) of the nodes are explicitly considered in
the equations of Frss and Fconn[8, 9]. Equations (6) and (8),
however, suffice to understand the analysis presented in the
next sections.
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Figure 3: CRBs for a 100 node network

dth. When a particular threshold is used, only the nodes
whose separation distance is similar to dth will contribute
a significant amount of information. As shown in Figure 4,
increasing the threshold, and therefore increasing the con-
nectivity, increases the number of nodes whose distance is
similar to dth. We recall, however, that Fconn ∝ 1/d2, there-
fore these nodes contribute individually less information as
the distance increases. In conclusion, the choice of dth de-
termines a tradeoff between obtaining high-quality measure-
ments from a few nearby nodes, or obtaining less valuable
data for a larger number of nodes that are farther away.
Analysis of the CRBconn also explains why connectivity-

based schemes achieve poor performance when the network
connectivity is too high, or worse, the network is fully con-
nected. This situation arises when the nodes’ communica-
tion range is comparable to the dimensions of the deploy-
ment area. In this case, if dth is increased excessively, each
node will be connected to most of the other nodes, but only
a few boundary nodes will be at a distance similar to dth.
Since these nodes contribute only a limited amount of in-
formation, the estimation error will be generally high. The
effect of large dth values is visible in Figures 5b,c for the case
of the 49 node networks. The plots show that the CRBconn
rapidly increases when the connectivity reaches values close
to the total number of nodes.

dth1

dth2

dth3

Max Range

Figure 4: Effect of choosing a different threshold.
Nodes with distances close to the threshold con-
tribute the most information.

3.2 Critical Connectivity
In Figure 3a we observe the existence of a critical connec-

tivity (ccr) value where the two CRB lines cross. For connec-
tivity values below ccr, CRBconn is lower than CRBrss, im-
plying that connectivity-based localization is potentially more

accurate than RSS ranging, while the opposite is implied for
values above ccr.
Given a network to localize, we will choose which approach
to use based on comparison between the actual network con-
nectivity and the critical connectivity value. Unfortunately,
computing the CRBs requires knowledge of the true node
positions, therefore we cannot use this approach in practi-
cal applications. To determine an alternative solution, first
we will study some properties of the ccr value, and then we
will show how to approximate it without knowing the actual
node positions.

3.3 Properties of the Critical Connectivity
We find that the ccr value does not change with the node
density and the number of anchor nodes.
The independence of ccr from the node density derives
from the structure of the terms Frss and Fconn, which scale
with the distances between the nodes. Assume all the node
distances are scaled by a factor S. Also assume that dth is
scaled by the same factor, so the network connectivity re-
mains constant. The relative position of CRBrss and CRBconn
will not change because the FIMs will be multiplied by the
same constant factor. In fact:

Frss(Sd) = S−2Frss(d)

Fconn(Sd, Sdth) = S−2Fconn(d, dth). (10)

Figure 3b shows the position of ccr when the network coor-
dinates are scaled by a factor S = {1, 2, 4}.
Our simulations also show that increasing the number of
anchor nodes causes both of the CRBs to decrease, but with-
out significantly affecting the position of ccr. This property
is visible in Figure 3c, which shows the CRBs for a 100 node
topology with 4,8, and 12 anchors.
On the other hand, the ccr value increases with the net-
work size. According to the analysis in previous sections,
the CRBrss depends only on the nodes that are in radio
range, while the CRBconn depends on the total number of
nodes in the network. Augmenting the network size (while
maintaining the same network connectivity) increases the
number of connectivity measurements available to estimate
the position of each node. Therefore, when the number of
nodes increases, the CRBconn decreases with respect to the
CRBrss, causing the the ccr value to increase. This property
can be observed in Figures 5b and c. In both cases, the ccr
value for a 100 node network is greater than the ccr value
computed for a similar network with only 49 nodes.



10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

Ratio d/dth

F
is

he
r 

In
fo

rm
at

io
n

Ir(d,dth)

(a)

σdB
np
= 9
2 σdB

np
= 6
3

σdB
np
= 3
4

0 10 20 30 40 50
0

5

10

15

20
CRBs for 49 and 100 node networks (6/3)

Connectivity

R
M

S
 E

rr
 [m

]

 

 

(b)

�

49 nodes

�

100 nodes

σdB
np
= 6
3

CR
Bc
on
n

CRBrss

0 10 20 30 40 50
0

10

20

30

40
CRBs for 49 and 100 node networks (9/2)

Connectivity

R
M

S
 E

rr
 [m

]

 

 

(c)

�

49 nodes

�

100 nodes
σdB
np
= 9
2

C
R
Bc
on
n

CRBrss
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The ccr value also increases when the ratio σdB/np in-
creases. The term K2c that multiplies both Frss and Fconn
will decrease by the same amount, however, in the case of
Fconn some of the loss is compensated by term Ir. As shown
in Figure 5a, this term increases with the ratio σdB/np,
therefore the CRBconn will increase less than the CRBrss.
Similarly to the previous case, the ccr value will increase.
Comparison between Figures 5b and 5c illustrates the prop-
erty described above. When the ratio σdB/np is increased
from 6/3 dBm to 9/2 dBm, both of the ccr values computed
for a 49 and a 100 node network increase.

3.4 Critical Connectivity Approximation
We have seen that the ccr value increases with the network

size and with the ratio σdB/np. In this section, we use ex-
tensive simulations to model the dependence of ccr on these
two parameters.
We generated about 1300 topologies with the number of

nodes between 25 and 400. The nodes are placed using a
noisy grid deployment model with various levels of grid per-
turbation. Four nodes on the corners of the network are
used as anchors. For each topology, the parameters np and
σdB are sampled from the intervals [2, 4] and [3, 9] dBm re-
spectively, resulting in values of the ratio σdB/np between
0.75 dBm and 4.5 dBm.
Figure 6a shows the simulation results. The ccr values are

plotted against the simulation parameters and appear to lie
on a smooth surface. We interpolate the ccr values using a

function that is empirically found:

c̃cr(n, r) = a0 + a1n+ a2r + a3nr +

+a4 logn+ a5 exp(−r), (11)

where n is the number of nodes and r is the value of σdB/np.
The values of the coefficient ai, obtained by least squares fit-
ting, are: a0 = −30.8305, a1 = −0.0892, a2 = 7.5626, a3 =
0.0475, a4 = 5.2669, and a5 = 33.5086.
The squared error between c̃cr(n, r) and the data points
is equal to 5.72, while the average error is equal to 1.79.
We find this error sufficiently small for practical application
of (11) in approximating the ccr value. Figure 6b shows
the interpolating surface (11) together with the data point.
Figure 6c shows the ccr values for different intervals of the
ratio σdB/np. The dotted lines are computed using (11) for
r equal to the central value of the σdB/np ranges considered.
As seen in Figure 6c, for low values of σdB/np, the ccr
value stabilizes around ten. As the ratio σdB/np increases,
however, there is an higher correlation between network size
and ccr values, therefore range-based schemes are beneficial
only in highly connected networks. These results confirm
the observations of other authors, who have occasionally
noted that connectivity-based schemes outperform range-
based ones in conditions of low connectivity [2] or when the
ranges are estimated using noisy measurements [1, 7].

4. TEST CASE
Consider the 100 node network of Figure 7 with param-
eters np = 3 and σdB = 8 dBm. Applying (11), we find:
c̃cr(100, 8/3) = 19.7 (the exact value found using the two
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Figure 7: 100 node network test case.

CRBs is 22). According to our analysis, we will use a con-
nectivity based scheme for connectivity values below 19.7,
and a range-based scheme when the network’s connectivity
is above 19.7.
To validate our choice, we compute the node positions us-

ing two algorithms. The first one is a range-free localization
scheme based on Self-Organizing Maps that we described in
[3]. We choose this scheme because it has shown to per-
form well for low connectivity values. The other one is a
range-based scheme that computes the MLE using gradient
descent3 [8]. As shown in Figure 7, a posteriori analysis
of the error confirms the choice made by using (11). For
connectivity values lower than 20, the range-free scheme’s
error is lower than the MLE’s error; the opposite is true for
connectivity above 20.

5. CONCLUSIONS
We have presented an analysis of the conditions under

which a scheme that uses range estimates obtained from
RSS values can potentially perform better than one that
uses connectivity measurements and vice versa. We have
also shown how the choice of the scheme to use is based on
comparing the connectivity of the network to localize against
the critical connectivity value discussed in Section 3.2. This
value can be approximated using a function of the network
size and the ratio σdB/np.
Our conclusions are based on analysis of the theoretical

bounds for the localization error. For connectivity values be-
low ccr, not every range-free scheme will perform better than
every range-based scheme. Similarly, schemes that use RSS
range estimates may perform worse than range-free schemes
for connectivity above ccr. However, if the schemes consid-
ered are known to perform close to the CRBs, analysis of
the critical connectivity will provide valuable information to
help choosing between them.
We note that our results are valid for schemes that use

only range estimates or connectivity information. Addi-
tional information can be used with both of the approaches.
For example, range-based schemes can impose constraints
on the minimum separation distance between disconnected
nodes (e.g. [4]). Similarly, connectivity-based schemes can
use RSS information to“sort”one-hop neighbors [5]. In both
cases, using additional information will cause the localiza-
tion error to decrease, and the values computed using (11)
will not necessarily correspond to the intersection point of

3We use the output of the range-free scheme as initial posi-
tion for the gradient descent.

the two CRBs. Analysis of these cases will be the focus of
our future research work.
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