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ABSTRACT
Connectivity-based localization schemes compute the node
positions using proximity information collected within the
network. In many cases of practical interest, Received Sig-
nal Strength (RSS) measurements are available, and connec-
tivity data can be obtained by comparing the RSS against a
threshold. We use the Cramér-Rao bound (CRB) analysis to
determine the threshold value that minimizes the localiza-
tion error. The CRB is based on knowledge of the propaga-
tion model’s parameters and the true node positions. Since
this information is not available to a localization scheme, we
approximate the optimal threshold value using a function
that depends only on the number of nodes in the network.
We use extensive simulations and RSS data from in-field ex-
periments to validate the results of the proposed approach.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network
Protocols.

General Terms
Algorithms, Performance, Theory.

Keywords
Localization, Connectivity, Signal Strength, Optimal, Thresh-
old, Cramér-Rao Bound, Approximation.

1. INTRODUCTION
Localization is an active research area devoted to support

location awareness in applications where the use of GPS
is not cost effective (e.g. sensor networks) or technically
feasible (e.g. indoor applications). Existing localization so-
lutions can be broadly divided into range-based and range-
free schemes depending on whether they compute the node
positions using distances and angles estimates or proxim-
ity information such as radio connectivity. Range-based ap-
proaches are capable of accurate results, but they often rely
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on additional hardware (e.g. ultrasound transceivers or an-
tenna arrays), which make them more expensive and less
suitable for ad-hoc deployments. On the other hand, range-
free schemes offer a coarser resolution, but are cheaper and
easier to deploy.
One of the most popular range-free techniques is local-
ization based on radio connectivity. The principle underly-
ing this approach is simple: since each node has a limited
communication range, the successful transmission of a radio
packet from node A to node B implies that the two nodes
are close in space. The use of connectivity information is
appealing for several reasons. First, since nodes already ex-
change data using radio messages, connectivity information
is easy to acquire or it might be already available; in fact,
many contention-free MAC protocols and routing algorithms
also require this information. Second, connectivity between
a pair of nodes is a binary value (1 if nodes are connected,
0 otherwise); therefore this information can be efficiently
communicated across the network with minimal impact on
the energy budget of sensor nodes. Third, several localiza-
tion schemes are available to process connectivity data on
hardware with limited memory and computational resources
(e.g. [2, 5]).
Another merit of connectivity-based localization schemes
is that they are easy to simulate. Using the idealized radio
model1 widely adopted in previous research work, connectiv-
ity between nodes can be simulated regardless of the complex
phenomena that regulate RF propagation. This model pro-
vides an abstraction useful in simulation studies; however,
it does not define a criterion to obtain connectivity data in
real world applications. In other words, system designers im-
plementing a connectivity-based scheme will have to define
their own rule to establish which nodes are to be considered
neighbors. In the Centroid scheme [2], for example, nodes
are regarded as neighbors if at least 80% of the message
transmitted are successfully received. Unfortunately, simple
rules like this will not always produce satisfactory results,
especially for densely deployed networks.

1.1 Motivating Example
Consider the case where one wants to localize the nodes
in Figure 1.a. The data2 for this network has been collected
by measuring the average Received Signal Strength (RSS)
between pairs of nodes in the cubicles of an office space [12].
Note that every node of this network is in the radio range of
every other node, and no packet loss was reported (i.e. the

1
Two nodes are connected if their distance is less than a fixed radius.
2
http://www.eecs.umich.edu/~hero/localize/
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Figure 1: Localization errors for the 44-node net-
work described in [12]. Nodes 3,10,35 and 44 are
used as anchors in the localization process.

network is fully connected). Any localization scheme that
uses proximity information will generate a large error. In
fact, since all the nodes have the same neighbors, eventually,
they will be associated to similar positions.
We can “artificially” reduce the connectivity by setting

a threshold and considering neighbors only those pairs of
nodes whose average RSS exceeds the threshold. It is not
clear, however, how such a threshold should be set: a value
that is too low might be ineffective in reducing the connec-
tivity, while a value that is too high might cause the network
to become disconnected and, again, result in large localiza-
tion error.
What is the correct threshold value? Figure 1b provides an

empirical answer to this question by reporting the average
localization error of three range-free algorithms for different
values of the RSS threshold. The schemes used to localize
the nodes in Figure 1a are: DV-HOP [10], Multidimensional
Scaling (MDS) [15] and localization using Self-Organizing
Maps (SOM) [5]. The plots show that a proper threshold
should be chosen between −60 dBm and −50 dBm; in fact,
in this range all three algorithms produce a low error.
Although a-posteriori analysis of the localization error

clearly shows the existence of threshold values that are more
effective than others, computing the error requires knowl-
edge of the true node coordinates. In real-world applica-
tions, an effective threshold value will have to be found using
a different approach.

1.2 Outline and Contributions
The aim of our work is to compute the optimal thresh-

old (i.e. the threshold that minimizes the localization error)
when connectivity is derived from RSS measurements. Our
analysis is based on the model proposed by Patwari and Hero
III [13], who have derived an expression for the Cramér–Rao
bound (CRB) when connectivity is obtained from the RSS
data described by the log-normal shadowing model. After
reviewing this model in Section 2, we introduce the Fisher
information and the CRB by analyzing a localization case
with a single node in one dimension (Section 3). This case
provides an intuitive example of how to use the CRB anal-
ysis to determine the optimal RSS threshold for a generic
connectivity-based localization scheme. In Section 3.3, the
analysis is extended to localization of networks deployed in
2D and 3D spaces. Simulation examples and analysis of the
localization error are used to validate the threshold choice
based on the CRB analysis.

Notably, the CRB analysis provides a result that is inde-
pendent of the scheme used. However, computing the CRB
requires knowledge of the true node positions, therefore this
approach does not yield a solution of practical utilization.
To solve this conundrum, in Section 4 we analyze some prop-
erties of the Fisher information matrix and we show that the
optimal threshold corresponds to a connectivity value that
is independent from the node density and the parameters
of the shadowing model. Therefore, computing the optimal
threshold can be cast as the problem of finding the optimal

connectivity value for the network to localize.
The main contribution of our work is an approximate for-
mula to compute the optimal connectivity value as a func-
tion of the network size (see Section 4.4). Using extensive
simulations, we show that this approximation, which does
not use knowledge of the node positions or the parameters
of the propagation model, can accurately approximate the
results obtained using the CRB analysis. The proposed re-
sult has two main applications:

1. At design time, the optimal connectivity value pro-
duced by the formula can be used to plan for network
deployments suitable for localization using range-free
schemes.

2. At run-time, if the network is densely deployed and the
connectivity is too high, the localization error can be
reduced by setting a threshold on the RSS values. In
Section 5.1, we demonstrate this application using data
two from real-world deployments with nodes densely
placed in a 2D and a 3D space.

Results in this paper indicate what network connectivity
should be used to ensure a low localization error. We note
that the results are independent of the localization scheme
used. In addition, using a similar analysis, we have also
investigated how to reduce the localization error by choos-
ing between range-based and connectivity-based approaches
when the measurements are derived from RSS data [6].

2. THE PROBLEM
RF-based localization is a popular research topic, but the
problem of how to convert RSS measurements into connec-
tivity data has not been thoroughly investigated. The so-
lutions proposed are mostly based on heuristic approaches.
For example, the already mentioned centroid scheme [2] se-
lects the neighbors based on the packet error rate and other
authors have proposed a scheme where the neighbors are
determined by sorting the RSS values [7].
We aim at putting the choice of the connectivity model
on a more rigorous footing and define a criterion of general
applicability. Our starting point is the work by Patwari and
Hero III [13], where connectivity data is obtained by com-
paring the average RSS values against a threshold. This
model assumes that any two nodes i and j exchange mes-
sages and collect a set (possibly empty) of RSS values:

Zij =
{

z
(1)
ij , z

(2)
ij , z

(3)
ij , . . .

}

.

2.1 The log-normal shadowing model
The RSS measurements collected by each node are af-
fected by random variations caused by multipath fading due
to reflection, diffraction and scattering of the RF signal in
the surrounding environment. This variability can be partly



Node 0 Node 1

x = 0 = ?

Figure 2: 1D localization: the distance of node 1
from the origin has to be estimated using connec-
tivity information.

reduced3 by averaging the measured values. Let Pij be the
average of the RSS values measured in dB (or dBm) between
nodes i and j. According to the log-normal shadowing model
widely used for link budget analysis in wireless communica-
tion [14], Pij is modeled as a random variable with normal
distribution:

Pij ∼ N (P̄ij , σdB) (1)

P̄ij = P0 + 10np log10

(

d0
dij

)

. (2)

In the expression above, P0 is the received power measured
at a distance d0, np is the path loss exponent and dij is the
distance between nodes i and j.

2.2 Threshold-based connectivity
We determine that two nodes should be considered con-

nected if Pij is greater than a fixed threshold Pth and discon-
nected in the other case. If two nodes are too far to commu-
nicate, we account for the possibility of having empty sets
Zij by computing Pij as follows:

Pij =







1
|Zij |

∑

z∈Zij
z if Zij 6= ∅

−∞ if Zij = ∅.
(3)

The connectivity between two nodes is defined by a random
variable cij which takes the following values:

cij =

{

0 if Pij < Pth (nodes disconnected)

1 if Pij ≥ Pth (nodes connected).
(4)

Having based the connectivity model on the selection of a
threshold Pth, the rest of the work will focus on how to
reduce the localization error by properly choosing Pth.

3. CRAMÉR-RAO BOUND ANALYSIS
We address the problem of selecting the optimal threshold

by first introducing the case where a single node has to be
localized using connectivity information. This simple sce-
nario allow us to intuitively explain the concepts that will
be later used to solve the problem in the general case.

3.1 Single Node Localization
Suppose two devices placed along a line as in Figure 2.

The position of node 1 (the unknown parameter θ) has to

3
By averaging the RSS values, part of the signal variability due to

time-dependent sources of multi-path (people or car moving, move-

ments of foliage due to wind, etc) can be removed.
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Figure 3: Probability density function of P01.

be estimated using connectivity information. The two nodes
have collected RSS data by exchanging radio messages and
P01 is the average of such values.
According to (2) and (4), the probability of the event
c01 = 1 (nodes connected) is the shadowed area in Figure 3
and can be computed analytically as:

p = Pr{c01 = 1} = 1− G

(

Pth − P̄01
σdB

)

, (5)

where G is the CDF of a normal random variable N (0, 1).
When the expected received power P̄01 equals Pth, the
nodes are connected with probability p = 0.5. This condi-
tion occurs when the distance between the nodes equals the
threshold distance dth:

dth = d010
P0−Pth
10 np . (6)

Using the equation above, (5) can be rewritten to show the
dependance of p on the true node distance θ and dth:

p = p(θ, dth) = 1− G

[

Kc log

(

θ

dth

)]

, (7)

where the constant Kc = (10np)/(σdB log 10) depends on
propagation model’s parameters.
In the rest of the paper, the problem of selecting the opti-
mal threshold will focus on computing the value Pth or dth
depending on the cases. Since the two values are related by
(2) and (6), computing one value or the other is indifferent.

3.2 Fisher Information
To determine the dth value that minimizes the estimation
error for the nodes’ distance, we consider the Fisher infor-
mation associated with the random variable c01. The Fisher
information is a measure of the amount of information that
c01 carries about the parameter θ, and it defines what is
the accuracy possible in estimating θ. Let f() denote the
probability mass function (pmf) of the random variable c01:

f(c01) = f(c01; θ, dth) =

{

1− p(θ, dth) if c01 = 0

p(θ, dth) if c01 = 1.
(8)

The Fisher information is:

F (θ, dth) = E

{

[

∂

∂θ
log f(c01; θ, dth)

]2
}

=

∑

c01∈{0,1}

(

∂
∂θ
f(c01; θ, dth)

f(c01; θ, dth)

)2

f(c01; θ, dth). (9)
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Figure 4: a) Probability p(θ, dth) for θ = 5m, b) Fisher Information for different ratios np/σdB , d) Fisher
Information for nodes at distance θ = {2.5, 5.0, 7.5}m.

The Fisher information is a quality metric of the esti-
mation procedure [4]. If T is an estimator for θ, then the
variance of T is bounded by the inverse of F :

Var{T (c01)} ≥
1

F (θ, dth)
. (10)

The inequality above, known as Cramér–Rao bound (CRB),
is the lower bound on the variance for any unbiased estima-
tor4 when using observation that are outcomes of the ran-
dom variable c01. The CRB is not related to any particular
estimation technique, but it only depends on the measure-
ment model given by (8). Our goal is to find the value of dth
that maximizes the Fisher information or, equivalently, min-
imizes the CRB. To find the expression of F as a function
of θ and dth, we replace (8) in (9) and obtain:

F (θ, dth) = K IR(θ, dth)

(

1

θ

)2

, (11)

where K = (2K2c /π) is a constant that depends on the pa-
rameters of the shadowing model and IR() is a term that
depends on the ratio between θ and dth:

IR(θ, dth) =
exp

[

−K2c log(θ/dth)
2
]

1− erf
[

Kc√
2
log(θ/dth)

]2 . (12)

Figure 4a shows the value of p as a function of the threshold
distance dth. The plots are computed for different values of
the ratio np/σdB, and assuming a distance between the two
nodes equal to 5 meters (θ = 5m). The information content
of the measurements is proportional to the square of the
ratio np/σdB . As shown in Figure 4a and 4b, increasing this
ratio results in a sharper probability transition and larger
values of the Fisher information. Intuitively, larger values of
the parameter np imply a stronger correlation between the
received power and the distance between the nodes, which is
a condition that causes the estimation error to decrease. On
the other hand, larger values of the parameter σdB pertains
to environments where a strong shadowing noise reduces the
accuracy of the distance estimates.
While the parameters of the shadowing models depend

on the radio environment and are out of our control, the

4
If θ̂ is an estimate of the unknown parameter θ obtained using T

(θ̂ = T (C)), then the estimator T is unbiased if E{θ̂} = θ.

amount of information available can be maximized by prop-
erly choosing dth. The plots in Figure 4b show that F al-
ways peaks when dth equals θ, and then it rapidly decreases
to zero as the difference between dth and θ increases. In or-
der to reduce the estimation error, we should set a threshold
value as close as possible to the true node distance (which
is unknown).
Threshold values with a large difference from θ will re-
duce the amount of information available and result in less
accurate estimates. For example, if the nodes are five me-
ters apart and we set a threshold distance that is too low
(e.g. dth = 2m), the two nodes will be disconnected with
probability very close to one. The measurement carries little
information about the true node distance because the nodes
will almost always result as disconnected, no matter of what
the actual value θ is. From a localization point of view, we
can only infer that the distance between the nodes is greater
than 2m (θ > 2m).
A similar situation occurs if we select a threshold that is
too large compared to the actual node distance (e.g. dth =
8m). The optimal choice is dth = 5m, which corresponds
to the case where nodes are connected with probability p =
0.5. If we increase the distance between the two nodes, the
optimal threshold is still achieved by setting dth = θ, but
the information obtained from connectivity measurements
decreases with the square of the distance between the two
nodes (see Figure 4c). In other words, distance estimates for
nearby nodes will be more accurate than distance estimates
for nodes that are far from each other.

3.3 Collaborative Localization
We now study localization in networks with several nodes
placed in 2D or 3D spaces. We refer to this scenario as
collaborative localization. Even if a node is not in the ra-
dio range of any anchors, the proximity of other nodes (all
placed at unknown locations) provide information to locate
the node itself. This approach is also known as multi-hop
localization because it supports localization of nodes placed
several hops away from the anchors.

3.3.1 CRB Analysis
Consider a network with n nodes at unknown locations
and m anchors. Similarly to the previous case, nodes col-
lect RSS measurements and obtain connectivity values cij by
comparing the average received power Pij against a thresh-



old Pth. Let C be the set of all the random variables associ-
ated with the measurements:

C = {cij : cij ∈ {0, 1}, 1 ≤ i, j ≤ n+m} . (13)

The connectivity measurements are used to compute the
n unknown node positions. The unknown coordinates can
be arranged in a vector θ with the following structure:

θ =

{

[θx,θy ] if d = 2

[θx,θy ,θz] if d = 3,
(14)

where d is the dimensionality of the deployment space and
the vectors θx,θy and θz contains the unknown coordinates:
θx = [x1, . . . , xn],θy = [y1, . . . , yn] and θz = [z1, . . . , zn].
Again, we will use analysis of the Fisher information and

the CRB to determine a threshold that minimize the esti-
mation error for θ. In the case of collaborative localization,
the measurement model is the joint probability function

f(C;θ, dth) = f(c11, . . . , cmm; θ, dth), (15)

which relates the connectivity measurements to the node
positions defined by θ and the threshold distance dth. If
we assume that the RSS measurements between each pair
of nodes are independent from all other pairs, then the joint
probability (15) can be written as:

f(C;θ, dth) =
n+m
∏

i,j=1

f(cij ;vi,vj , dth), (16)

where vi and vi are the vectors with the coordinates of nodes
i and j; vi = [xi, yi]

t for d = 2, and vi = [xi, yi, zi]
t for

d = 3. Each pmf in (16) is similar to (8). In particular, two
nodes i and j are connected with probability

pij = Pr{cij = 1} = 1−G

[

Kc log

(

dij
dth

)]

, (17)

where dij =
√

(vi − vj)t(vi − vj) is the Euclidean distance
between the nodes. All the other symbols have the same
meaning discussed in Section 3.1.
In the multi-parameter case, the information is measured

by the Fisher Information Matrix (FIM) with elements

[F (θ)]ij = E

{

∂

∂θi
log f(C;θ, dth)

∂

∂θj
log f(C;θ, dth)

}

. (18)

The FIM has (2n × 2n) elements for nodes placed in 2D
spaces, and (3n× 3n) elements when localization computes
3D coordinates. Given the structure of the parameter vec-
tor defined in (14), the FIM is partitioned in sub-matrices
Fxx,Fxy , · · · ,Fzz with n× n elements each:

F =



































[

Fxx Fxy

Ftxy Fyy

]

if d = 2







Fxx Fxy Fxz

Ftxy Fyy Fyz

Ftxy Ftyz Fzz






if d = 3.

(19)

More details on how to compute the FIM for the 2D case
are given by Patwari and Hero III [13]. For our analysis, it
suffices to note that each sub matrix has elements similar to
(11). For example, the elements of the sub-matrix Fxx are:

[fxx]ij =











−K · IR(dij , dth)
(xi−xj )2
d4
ij

(i 6= j)

K ·
∑n+m
k=1 IR(dik, dth)

(xi−xk)2
d4
ik

(i = j)
(20)

The sub-matrices Fyy and Fxy have a similar structure,
but the terms (xi − xj)

2 are replaced by (yi − yj)
2 in the

case of Fyy, and by (xi − xj)(yi − yj) in the case of Fxy.
Similarly, the terms in the sub-matrices Fxz,Fyz and Fzz
are: (xi − xj)(zi − zj), (yi − yj)(zi − zi) and (zi − zj)

2

respectively.
Note that anchor information contributes to the diagonal
terms of each submatrix. At least three anchors are needed
for localization in 2D, while four non-collinear anchor nodes
are necessary for localization in 3D. Failure to include suf-
ficient anchor information will cause the FIM to be rank
deficient [9]. In this case, analysis of the CRB is possible by
using the Moore-Penrose pseudoinverse of the FIM [3]. In
our analysis we assume that the FIM is always invertible.
The inverse of the FIM bounds the covariance matrix of
any unbiased estimator for θ that uses observation from the
set of random variables C:

Cov{T (C)} ≥
1

F
, (21)

The diagonal elements of F−1 are the lower bound for the
variance on the node coordinates xi, yi and zi: σ

2
xi = [F

−1]i,i,
σ2yi = [F

−1]i+N,i+N , and σ
2
zi = [F

−1]i+2N,i+2N . The vari-
ance on the position of each sensor location is obtained by
summation of the variance of the single coordinates:

σ2i =

{

σ2ix + σ
2
iy if d = 2

σ2ix + σ
2
iy + σ

2
iz if d = 3.

(22)

If the same topology has to be localized in different environ-
ments (different realization of the random variables Pij ’s),
then the terms (22) are a lower bound for the RMS error on

the position of each node. Assuming that v̂
(1)
i , · · · , v̂

(k)
i are

K estimates for the position of node i, then:

RMS(i) =

√

√

√

√

1

K

K
∑

i=1

(v̂
(i)
i − vi)

t(v̂
(i)
i − vi) ≥ σi. (23)

3.3.2 Measurement Model
In the analysis above we assumed that every node makes
connectivity measurements with every other node in the net-
work. In practice, it may happen that two nodes are too far
from each other to exchange messages and collect RSS infor-
mation. In absence of external interferences, this situation
occurs when the RF signal reaches the recipient with a power
that is below the transceiver’s sensitivity Ps.
The sensitivity Ps can be regarded as an implicit threshold
set by the hardware. Since the probability of receiving mes-
sages with RSS lower than Ps is low, the threshold selection
problem is meaningful only for values Pth > Ps. When nodes
are unable to exchange radio messages, their RSS is lower
than Ps and, consequently, lower than Pth. It follows that
even pairs of nodes that are out of their radio range produce
valid connectivity measurements. According to the discus-
sion in this section and the model in Section 2.2, these nodes
are always associated with the event “node disconnected”.

4. OPTIMAL THRESHOLD
The lower limit on the variance of the node positions can
be found by computing the inverse of the FIM. Since the
Fisher information depends on the choice of the threshold
distance dth, the values (22) will also depend on dth.
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Figure 5: CRB and average localization error for
localization in 2D and 3D spaces using three range-
free schemes.

To determine an optimal value for the threshold, we con-
sider the average of the standard deviation of the node po-
sitions and we take the value that minimizes it:

d∗th = arg min
dth

CRB(dth) (24)

CRB(dth) =
1

n

n
∑

i=1

σi, (25)

where the values σi depends on dth as shown in the previous
section.
Before discussing some properties of the FIM, we use two

localization examples to validate the choice of the thresh-
old computed using (24). To get a sense of how localiza-
tion occurs in practice, we have computed the average er-
ror of three schemes that are based on diverse approaches
to range-free localization. The schemes considered are DV-
HOP [10], MDS [15] and the SOM-based localization algo-
rithm described in [5]. Figures 5a and 5c show two sample
topologies with nodes placed in a 2D and a 3D space re-
spectively. The node positions were generated by arranging
the nodes in a regular configuration (e.g. on the vertex of
a regular grid for the 2D case), and then perturbing the
initial positions with zero mean Gaussian noise. The CRB
for each network is plotted in Figures 5b and 5d together
with the error achieved by the three localization algorithms.
The values were computed by averaging the localization er-
ror5 over 20 repetitions obtained for different realization of
the values Pij ’s. As shown in Figure 5b and 5d, the three
schemes achieve different localization errors, however, in all
of the cases, the minimum error is reached when the power
threshold Pth is close to the one that produces the minimum
value of the CRB.

5
For a meaningful analysis, the CRB should be compared against the

the RMS errors defined in (23), but in Figure 5 we show the average

localization error because it provides a more intuitive metric.

4.1 Properties of the FIM and the CRB
Analysis of the localization error in the previous example
supports our choice to compute the optimal threshold value
using the CRB. We now investigate how the optimal thresh-
old changes as the original network topology is transformed
or the parameters of the propagation model change. Our
intention is to demonstrate that an approximation for the
optimal threshold can be computed using a function that
depends only on the network size rather than relying on
the analytical approach shown so far. Besides the computa-
tional burden incurred in computing the inverse of a poten-
tially large matrix, the CRB analysis does not have practical
value because it is based on exact knowledge of the propaga-
tion model’s parameters, and, above all, the unknown node
positions.
In previous work, the CRB has been presented for the case
of localization using estimates of the inter-node distances. In
that context, it was shown that the CRB is invariant under
global translation, rotation or reflection of the network [3]. If
we exclude the terms IR(·, ·), the FIMs for distance and con-
nectivity measurements have the same structure, therefore
the same properties hold for connectivity-based localization.
In the next section we analyze the effect of global scaling of
the network coordinates.

4.2 Coordinate Scaling
Consider an arbitrary network and let d∗th be the optimal
threshold computed using (24). If we multiply the network
coordinates by a factor S, each element of the FIM will be
altered. We limit our attention to the terms of the sub-
matrix Fxx; the term of the other sub-matrices will change
similarly. After a coordinate scaling by a factor S, the new
terms will be:

[fxx]
(S)
i6=j = −

(

1

S2

)

K IR(Sdij , dth)
(xi − xj)2

d4ij
. (26)

We note that each element is multiplied by a factor 1/S2 ,
which derives from the ratio (xi−xj)

2/d4ij , and also that the
value of the term IR(·, ·) is altered as a result of scaling the
node distances dij . However, since IR(·, ·) only depends on
the ratio between dij and dth (see (12)), if we select a new

threshold such that d
∗(S)
th = S d∗th, the value of IR will remain

unchanged. As a result, the FIM will be multiplied by a
constant factor S−2, which does not affect the position of the

minimum in (24). We conclude that the value d
∗(S)
th = S d∗th

will be the optimal threshold for the new topology.
We show the invariance of the optimal threshold to scal-
ing in Figure 6a by computing the CRB for a 64-node topol-
ogy in 2D. We note that since the threshold is scaled to-
gether with the network coordinates, the optimal threshold
is achieved in correspondence of a constant value of the net-
work connectivity (see Figure 6b). We denote this optimal
connectivity value using c∗.

4.3 Invariance to changes in the parametersof the propagation model
In Section 3.1 we have shown that the value of the ratio
np/σdb increases or decreases the Fisher information, but it
does not change the position of the optimal threshold (see
Figure 4b). Using simulations, we have verified that a sim-
ilar result holds for the case of collaborative localization.
Changing the value of np/σdb does not significantly alter
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the value of d∗th and, consequently, the value c
∗. Although

we believe that this property can be proved analytically, the
differentiation of the terms in the FIM leads to a complex
expression whose analysis is beyond the scope of this work.
In Figure 6c, we plot the representative example of a 64-
node network and the CRB computed for different ratios
np/σdB (we recall that np is typically between 2 and 4, and
σdb between 3 and 12 dBm). Similarly to what was seen for
the case of coordinate scaling, the optimal threshold pro-
duces a connectivity value that does not change with the
ratio np/σdB .

4.4 Approximation of the Optimal Connectiv-ity Value
In the previous section we have seen that given a net-

work topology, the optimal threshold d∗th yields a connec-
tivity value c∗ independent from the node density and the
ratio np/σdB. Here we exploit this evidence to compute an
approximation for the optimal value c∗.
We first recall that the Fisher information reaches its max-

imum for nodes with distance approximately equal to dth
(see Section 3.2). The information also decreases quadrat-
ically with the distance; therefore, nodes that are far con-
tribute less information than nodes that are closer.
Now assume we want to estimate the position of node 0

using connectivity information from surrounding nodes (see
Figure 7a). If we use a small threshold value (e.g. dth = r1),
only the few nodes with distance similar to r1 will contribute
a significative amount of information. If we use a larger value
(e.g dth = r3), the number of nodes with distance similar to

the threshold increases, but these nodes contributes individ-
ually less information because they are far from node 0. In
setting the optimal threshold, we need to consider the trade-
off between receiving high-quality information from a small

number of nearby nodes, or receiving less valuable informa-
tion from a larger number of nodes that are far.

Our goal is to estimate of the amount of information
available when using an arbitrary dth value. To this pur-
pose, we partition the nodes in Figure 7a using a sequence
r1, r2, r3, · · · of increasing radius values. Assuming node po-
sitions sampled from a two-dimensional Poisson point pro-
cess, the number of nodes ci within a radius ri from node 0
is:

ci = λπr
2
i , (27)

where λ is the density of the process.
There are (c2− c1) nodes at a distance between r1 and r2,
(c3− c2) nodes between r2 and r3 and so on. As previously
discussed, these nodes contribute different amounts of infor-
mation depending on their distance from node 0 and on the
ratio between such distance and dth. Since each measure-
ment contribute additively to the elements of the FIM, we
approximate the total amount of information as follows:

F̃(c) = K
∑

i

IR(ri, dth)
1

r2i
(ci − ci−1), (28)

where c is the value of network connectivity achieved when
dth is used, and the term IR is the one discussed in Sec-
tion 3.2. Note that, under the hypothesis of Poisson distri-
bution, c = λπd2th.
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Figure 8: a) Optimal Connectivity for 2D networks, b) Optimal Connectivity for 3D networks, c) Localization
error for the network in [12].

If we reduce the distance between the ri values to an in-
finitesimal value, the summation in (28) becomes the follow-
ing integral:

F̃ (c) = K

n+m
∫

2

IR(ri, dth)
1

r2i
dci. (29)

In the equation above, the value ci is a function of ri as
described in (27). The limit of integration are chosen so that
that there are a minimum of two nodes within the smallest
radius (the reference node and another one) and a maxi-
mum of n +m nodes. Using (29) to measure the available
information, the approximation of the optimal connectivity
is the value that maximizes the integral:

c̃∗ = argmax
c
F̃ (c). (30)

Using simulation, we have empirically verified that the ap-
proximate values share the same properties of the optimal
connectivity value discussed in previous sections. The value
computed using (30) is independent of the node density and
the ratio np/σdB . These properties are illustrated in Fig-

ures 7b and 7c, where the F̃ (c) is computed for a 64-node
network (2D) with different parameters of node density and
ratio np/σdB . Equation (30) allows us to compute the opti-
mal connectivity using a function that depends only on the

network size.
Results for the 3D case are obtained following a similar

approach. The only difference is that nodes are partitioned
using spheres of radius ri. The number of nodes contained
in each of such spheres is:

ci =
4

3
λπr3i . (31)

5. SIMULATIONS
Using a larger simulation set, we have evaluated the qual-

ity of the approximation given by (30) for networks with
nodes in 2D and 3D spaces. For each case, we simulated 200
random networks with a number of nodes between 20 and
500. The deployment areas were fixed: nodes were placed
inside a square region 50m× 50m for 2D networks, and in
cube with side measuring 50m for 3D networks. Four and
eight nodes in the corner of the network were used as anchors
for localization in 2D and 3D deployments respectively. For
each network the parameters of the propagation model were

uniformly sampled in the following intervals: np ∈ [2, 4] and
σdb ∈ [3, 12] dBm.
Figures 8a and 8b show the simulation results. The clouds
of points correspond to the optimal connectivity values c∗

computed using the CRB. The dashed lines represent the
approximate values c̃∗ found using (30). These values were
computed in MATLAB by numerically integrating (quadl)
the integral in (29) and then finding the minimum of its
inverse (fminsearch).
The plots show that (30) produces a good approximation
of the results obtained using CRB analysis. For each of the
simulated networks, we compared the difference between the
absolute minimum of the bound and the value computed
using the approximate threshold:

Bound Error % = 100
CRB(d̃th)− CRB(d

∗
th)

CRB(d∗th)
, (32)

where d̃th is the threshold that realizes the connectivity
value c̃∗ computed using (30). On average, the bound error
was 0.53% for 2D localization and 0.34% for 3D localiza-
tion. The standard deviation of such error was 1.15% for
2D localization and 0.34% for the 3D case.

5.1 Case Studies
Using (30) we are finally able to give an answer to the
question regarding the optimal threshold for the 44 node
network of Figure 1a. The optimal connectivity value for
a 44 node network is 9.27; for the network considered, this
connectivity is achieved when Pth = −53.3 dBm. In Fig-
ure 8c, the optimal threshold (the vertical dashed line) is
plotted together with the error of the DV-HOP, MDS and
SOM algorithm. For this network we also report the CRB
computed using the estimated values for the propagation
model’s parameters (np = 1.7, σdB = 3.91 dBm). The con-
nectivity value given by (30) is close to the minimum of the
CRB and close to the absolute minima of the MDS and SOM
errors.
In the second case study, we have used the RSS data from
a 38 node network deployed in a 3D space [8]. The data
is freely available on the ENALAB web site6. The optimal
connectivity value found using (30) is 11.093, which for this
network is achieved by setting a threshold Pth = −34.3dBm.
The error of the three localization algorithms for this net-

6
http://www.eng.yale.edu/enalab/XYZ/data_set_1.htm



work is reported in Figure 9. Again, we note that the esti-
mated threshold result in an error that is close to the abso-
lute minimum error for the three localization schemes.
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6. RELATED WORK
Over the past few years, analysis of the CRB have been

used by a number of authors to characterize the error bound
of localization algorithms, especially for the case of range
measurements (angle or distances) affected by Gaussian noise.
Moses et al. [9] derive the CRB for the case where localiza-
tion is based on signals emitted by a set of sources, and
nodes can measure the Time of Arrival (ToA) or the Angle
of Arrival (AoA). A study of the CRB under various con-
ditions of node and beacon density is proposed by Savvides
et al. [1]. Wang et al. define a Bayesian Bound (BB) that
is the covariance of a posterior distribution computed from
the sensor observation [16]. This bound is equivalent to the
CRB for measurements with Gaussian error, but it is compu-
tationally less demanding. Analysis of the CRB is proposed
by Patwari et al. for the case of collaborative localization
using distance estimates obtained by ToA and RSS [12], and
for localization using angle estimates [11]. The case of lo-
calization using connectivity information or quantized RSS
levels is studied by Patwari and Hero III [13]. The idea to
obtain connectivity data from RSS value is also used by Li et
al. to implement a Partial Range Information (PRI) scheme
that derives sub-hop information useful in improving the lo-
calization accuracy [7]. This idea is somewhat similar to the
one proposed in this work, since we also try to improve the
localization accuracy by choosing a threshold for the RSS
values.
Finally, in a work complementary to the one in this paper,

we have used the CRB analysis to determine the conditions
under which a range-free scheme can potentially outperform
a range-based scheme that uses RSS values to obtain dis-
tance estimates [6].

7. CONCLUSIONS
Using CRB analysis we have shown how to define an op-

timal threshold value when connectivity information is ob-
tained from RSS measurements. As a result of our analysis,
we have found that the optimal threshold is related to the
connectivity (i.e. average number of neighbors per node)
and that this value can be accurately approximated using a
function that depends only on the number of network nodes
The results presented are independent from the localiza-

tion algorithm used and provide a simple and practical rule

to determine the optimal connectivity level for range-fre lo-
calization. After having presented results for the 2D and 3D
cases, we are currently investigating the 1D case.
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