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ABSTRACT

Recent years have witnessed the emergence of novel application paradigms such as the Wireless Sen-
sor Network and Context Aware computing. Among the challenges posed by these applications, localization
— i.e. the process of locating people and/or devices — has emerged as a key problem that has found only
partial answers. Although GPS receivers are common on many consumer electronic devices, alternative so-
lutions are needed when locating devices that strive to be small and inexpensive, as in sensor networks, or
when supporting indoor positioning. This dissertation focuses on radio-based positioning schemes suitable
for applications where GPS is not a viable solution.

The first part of this work addresses schemes that use proximity constraints inferred from radio con-
nectivity. A novel solution based on the Self-Organizing Map (SOM) formalism is proposed. Using extensive
simulations, the SOM approach is shown to achieve a low localization error using limited computational re-
sources. Comparison with other schemes demonstrate favorable results, especially in sparse deployments and
when few (or none) of the nodes are located at known positions.

The second part focuses on theoretical analysis of the results. Two broad families of positioning
schemes are analyzed: 1) Range-free schemes that use radio proximity information, as in the SOM approach;
and 2) Range-based schemes that measure the attenuation of the Radio-Frequency (RF) signal to estimate
inter-node distances. First, analysis of the Fisher Information and the Cramér—Rao bound are used to inves-
tigate the theoretical limits that bound the localization error in the two cases. Then, general design criteria
are proposed to reduce the error of range-free schemes and determine in which operative conditions they can
outperform range-based solutions.

In the final part of this work, the theoretical results are used to design an improved variant of the
SOM algorithm that combines the best traits of proximity and RSS ranging localization. Validation using
measurements from real deployments shows significant improvements over the original SOM version and
other localization schemes. Practical implementation of RF-based positioning systems is further investigated
by using directional antennas for Angle of Arrival (AOA) estimation. A novel angle-based system that uses a
single anchor is described and validated using experimental results. Additionally, a SOM variant capable of

exploiting AOA information in collaborative localization is investigated using simulations.
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Chapter 1

Introduction

Localization geo-location andlocation sensingre equivalent terms that refer to the process of computing
the physical position of a devic&(4]. At the present, the most popular localization system is the widespread
Global Positioning SystetfGPS), which is used in a variety of military, industrial and recreational applica-
tions. GPS devices determine their position by receiving signals from a constellation of 24 satellites arranged
in six orbital planesT7]. When the receiver locks on four or more signals, it first uSete Of Arrivd (TOA)
techniques to estimate the distance of the transmitting satellites. Then, it appligt-taterationalgorithm
to compute its 3D position on the earth’s surface and report the result to the user.

Although GPS receivers are popular in many consumer electronic devices, some application domains
require different localization approaches. Two relevant cases where the GPS technology is not effective are:

1) Wireless Sensor NetworRd/SNs), and 2) Location-Aware applications operating indoors.

1.1 Wireless Sensor Networks and Indoor Applications

The WSN is a flexible and scalable paradigm that is drawing increasing attention due to its potential utilization
in many civilian and military domains. Designed to work without infrastructures, WSNs exploit inexpensive
sensor nodes and multi-hop radio communication to implement large-scale monitoring solutions.

Typical WSN applications include environmental monitoring, asset tracking, surveillance and disas-
ter relief [7]. In all these cases, knowledge of the node positions is required to correctly evaluate the results.
For example, in precision agriculture, temperature and moisture values are correlated with position to identify

micro-climate zoneslb7. Knowing the sensor positions is also critical for locating an intruder vehicle in



a military field [10], as well as guiding a team of firefighters to the location of an emerge&&y Finally,
network services such as geographical routifff}, [location-based querieg (] and resource directorie9§
rely on knowledge of the node coordinates.

The sensor positions are unknown as a result of ad-hoc deployment or because the sensors are mo-
bile. Applications with nodes scattered from airplanes or ground vehicles are examples of ad-hoc deploy-
ment; mobile networks are found when nodes are carried by peb@h: [or attached to vehicle®}] and
animals L05. While some of these WSNs can exploit GPS-enabled sensors, low-cost deployments and
applications that can tolerate approximate positioning are better served by solutions that limit, or avoid alto-
gether, the need of GPS receivers. Finding a substitute to GPS is especially important in applications where
the nodes strive to be small, inexpensive and low-power.

Other applications requiring implementations alternative to GPS are those deployed indoors, where
the signal reception from the satellites is unreliable. Indoor position awareness is required by numerous
applications ranging from in-building navigation to asset and personnel management in large warehouses and
hospitals 104]. Indoor positioning is also fundamental to enhance the experience of users interacting with
ubiquitous computing system&7]. Smart spaces are expected to sense the user’s position to deliver relevant

content, facilitate access to nearby resources, and enforce security pdlg;iés]|

1.2 Collaborative Localization

As previously mentioned for the GPS, the absolute position of a wireless device can be determined by collect-
ing measurements from satellites at known position. The same approach can be used to support localization
in smaller scale wireless systems: If a node can estimate the distance from three anctaradevices at
known locations, its position can be computed using a multi-lateration scheme similar to that used by GPS re-
ceivers. This approach is conceptually well defined, but it might fail in applications where nodes have limited
communication and sensing capabilities. For example, in low-power sensing applications and other ad-hoc
deployments, it might be not possible to guarantee a sufficient anchor coverage to support multi-lateration for
every device in the network. In such scenarios, nodes can compensate for the lack of reference devices by tak-
ing measurements with other peer nodes at unknown position. If all the nodes participate in this collaborative
effort, the collected data can be used to localize the whole network (see Eigure

Existing collaborative solutions can be groupedange-basedndrange-freeschemes depending

on the type of measurements usdRiange-basedschemes implement localization using angle or distance



The Collaborative Localization Prob lem:

Inputs:
e Pairwise measurements between neighbor nodes:

Distance —__
Range-Based Loc.
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Proximity

Range-Free Loc.

e The position of some anchor nodes - optional:
(Anchor-based vs Anchor-free Loc.)

Anchor Sensing/Meas. Range Anchor

Output:
e Node positions.

Figure 1.1: Collaborative localization in ad-hoc wireless networks. The node positions are computed using
information collected by neighboring devices.

estimates between pairs of nodes. This information is typically obtained by augmenting each node with
dedicated hardware such as ultrasound transceivers for distance measurements, or directional antennas for
angle of arrival estimation. On the other hanahhge-free schemes only rely on proximity information, i.e.
knowing if two nodes are close in space or not. Although this solution can only provide coarse-grained
results, proximity constraints are readily available by sensing common physical phenomena such as sound
and light, or by exchanging radio messages.
Another classification among collaborative schemes is whether they necessarily assume the presence
of anchor nodes or not. While most of the positioning schemeararBor-basedsolutions that only work if
the network contains devices at known positianchor-free schemes will work even when no anchors are
present. In the latter case, since no absolute reference points are used, the algorithmsrgaiemitmaps
that are useful to implement services such as navigation, geographical rotfjngrid service discovery.
A-posteriori conversion into absolute maps is always possible when anchor information becomes available.
Some of the network positioning schemes proposed in the literature are reviewed in Chapter
chapter also provides a formal definition of collaborative localization and discusses some of the reasons
that make it a difficult problem: 1) From a theoretical perspective, network localization is analogous to the
problem ofembedding graph in a Euclidean space. Except for selected tabésproblem is NP-hard even
assuming error-free range measurements or ideal connecfi%®y/26]. 2) In addition to the computational
complexity of finding a solution, the result may be ambiguous, i.e. multiple solutions are admissible, when

not enough constraints are availabd][ This situation likely arises in WSNs because nodes have limited

1The localization problem can be efficiently solved in networks where a high number of error-free inter-node distances and angles
are known. See the work using semidefinite programming by Biswas arZPler[the definition oftrilateration graphs 12].



communication/sensing range and can only interact with a few neighbors. 3) In practice, since nodes use
inexpensive sensors and are deployed in uncontrolled environments, the measurements are not only difficult
to obtain, but also corrupted by substantial noise that increases the uncertainty in the 129ultgJ).

The intrinsic difficulty of the problem explains the large number of localization schemes proposed
over the past few years. The literature review in Chaptelthough far from being exhaustive, serves to

define the context for the work presented in the following chapters.

1.3 Outline and Contributions

This dissertation focuses on collaboratRE-based localization systems.e. systems where the information
to localize the network nodes is collected by exchanging radio messages. This approach is inexpensive and
available to any node with a built-in wireless interface. In addition, radio message can support both range-
based and range-free schemes. In the range-based approaRec#ieed Signal Streng{RSS) measured
by the transceiver is used to estimate the distance of the transmitting node. In the range-free approach, the
RSS values are usually discarded, but the successful reception of radio messages indicates that two nodes are
close in space. This condition is also expressed by saying that the nodesigitborsor connected The
proposed work investigates collaborative localization following three research directions:

e The design and validation of novel range-free schemes.

e Theoretical analysis of the limits that bound the localization error for RF-based systems.

¢ Implementation of practical localization systems.

The following sections describe the contributions in each area and provide an outline of the dissertation.

1.3.1 Range-Free Localization

Chapter3 describes a novel range-free scheme based on a neural network formalism knowrSa$-the
Organizing Map(SOM). The proposed scheme computes the node positions using proximity constraints
between sensors and exploits the topological ordering properties of the SOM paradigm (see3peétion
though other SOM-based localization schemes have been presented, to the best of the author’'s knowledge,
this is the first approach to use SOM for localization based on radio connectivity (see Segtion

Results of extensive simulation show that the SOM-based approach is accurate, computationally
feasible, and suitable for a variety of application scenarios. SOM-based localization works with or without

anchor nodes. The anchor-free version (SOM-V) generates virtual coordinates that are effective when used for



geographic routing (see Secti8m). Using the SOM-V'’s maps, geo-routing achieves performance close to

the case where the true node positions are available. A second version of the algorithm (SOM-A) can generate
absolute coordinates by including anchor information in the training phase of the map (see %égtidsing

only four anchor nodes, SOM-A achieves a localization error as |oW3dR, i.e. 30% of the communication

range, for medium-sized networks with an average connectivity of just five neighbors per node. This result
represents a 30% to 60% improvement over the performance of popular range free schemes such as DV-
HOP [127] and MDS [154. Finally, based on analytical analysis, the proposed scheme is shown to have a
low computation and communication overheads, hence making it suitable for resource-constrained networks

(see SectioR.6).

1.3.2 The Limits Of Radio-Based Localization

After having presented the SOM-A and SOM-V schemes, this dissertation specifically focuses on the mea-
surements used to implement localization. Despite the attention received by RF-based approaches, two fun-
damental questions have not been sufficiently investigated in the literature. The two questions are:

1. What is an optimal approach to infer connectivity information from radio messages?

2. How do the performance of the range-free solution compare against those of range-based approaches?

The first topic addressed is range-free localization. The question raised is how to obtain connectivity
information from radio measurements. Since previous research work has often assumed circular connectivity
based on atdealizedradio propagation, only few authors have offered implementation details on how to
obtain connectivity information. For example, in the popweantroidscheme 30], nodes are connected if at
least90% of the messages are correctly received. Unfortunately, simple heuristics like this one can lead to
large errors, especially when most of the nodes are within their radio range.

Section4.1adopts a more general connectivity model based on quantization of the RSS values. The
problem of finding the optimal quantization level is then investigated on the basis of previous research work
that has cast localization as a parameter estimation problem. Using this framework, analysis of the Fisher
Information and the Cramér—Rao bound (CRB) serves to identify the optimal threshold that minimizes the
theoretical error of range-free localization. The analysis is further extended to avoid computation of the CRB,
which requires knowledge of the true node positions. The main contribution of SécBigthe derivation
of an approximate formula to compute the optimal threshold and obtain connectivity information from radio
measurements. Notably, this approach can be applied to any range-free scheme and avoids the large error

typically found when localizing densely deployed networks.



The second question raised ldow do range-free schemes compare against solutions that use the
RSS data (no quantization) to produce distance estimdtésRnown that range-free schemes are capable of
fine-grainedpositioning, while the range-free approach can only prodegse-grainedesults. But range
estimates obtained from RSS values can be inaccurate due to the unpredictability of the wireless channel,
and some authors have occasionally noticed that connectivity-based approaches can outperform range-based
schemes in noisy environment2d, 20]. Given these premises, it is not clear when a system designer should
opt for a range-based or a range-free scheme.

Using an approach similar to the one used for the optimal threshold problem, Sé&mympares
range-based and range-free localization. Analysis of the CRB shows what parameters affect their perfor-
mance, and under which conditions one approach can potentially outperform the other. Again, the results are
analyzed to find design criteria of practical applicability. Sectlohshows that an informed choice between
the two approaches is possible by comparing the current network connectivity against the value of a function
that only depends on the network size and the parameters of the propagation model. While this result and
the optimal threshold approach of Sectib2 are the major contributions of Chap#rin general, the pro-
posed analysis serves to understand the factors that affect the localization error in the two cases and suggests

strategies to improve RF-based localization.

1.3.3 Implementation of RF-Based Positioning Systems

The last part of this dissertation focuses on practical implementation of localization systems and evaluation
of their results in realistic application scenarios.

Chapters investigates a localization scheme that is resilient against different operative conditions.
Based on the theoretical analysis of Chaptethe SOM algorithm is presented in a new variant (SOM-R)
capable of using RSS measurements together with connectivity data (see S&dtidihe SOM-R scheme
retains the quality of range-free localization for low-connected networks, while ensuring accurate localization
in dense deployments. Results using RSS traces from three different node deployments show a SOM-R’s error
independent of the network connectivity and significantly lower than the error of MDS, DV-HOP and the
other SOM variants. Similar results are achieved in networks with anisotropic layouts, which are notoriously
harder to localize.

Practical implementation of RF-based positioning systems is further investigated by using directional
antennas foAngle of Arrival(AOA) estimation. Chaptes discusses twswitched-beamantennas developed

in collaboration with the Microelectronics Lab, Universita Degli Studi di Firenze, Italy. Field tests are used



to evaluate the results of different AOA estimation techniques. In addition, Se&tahescribes a novel
localization system that uses one of the proposed antennas to localize a wireless target using measurements
from a single anchor node. Three different localization algorithms are described and evaluated using RSS
traces collected during a measurement campaign in a large classroom at the University of Florence. The
experiments show that 2D target localization is feasible using a low-cost RF system with a single anchor
node. Finally, application of single-anchor localization is extended to collaborative schemes by including
AOA information in the training phase of the SOM algorithm. Preliminary simulations confirm the proposed

scheme as a viable solution to enable accurate collaborative localization using a single anchor node.



Chapter 2

Background

Localization is an active research area devoted to suppcation awarenesg applications where the use

of GPS is not cost effective (e.g. sensor networks) or technically feasible (e.g. indoor applications). This
chapter presents some of the theoretical background necessary to understand the complexity of the positioning
problem. In general, network localization is known to be a computationally intractable problem; additionally,

its results are prone to ambiguities. Given these challenges, a large number of localization schemes has
been proposed to obtain approximate node positions. Some popular approaches are described ;x¥ection
Additional bibliography is discussed within other parts of this dissertation, and "related work" sections appear

at the end of Chaptefsand4.

2.1 System Model and Problem Definition

Considern devices deployed over a two-dimensional space. It can be assumed that each node is identified
by a unique ID. Devices communicating using standard protocols, e.g. IEEE 802.x.y, typically have a 48-bit
or 64-bit unique MAC address that can be used to identify the node. For simplicity, the unique identifiers are
mapped to the first integers{1,...,n}.

The physical location of each device is described by a coordinate vegtor= [z;,y:]t,
i = {1,...,n}. Applications with nodes deployed in 1D or 3D spaces will consider coordinate vectors
v; = [z;] andv; = [z;, s, 2], respectively. The goal of a localization service is to compute the unknown

vectorsv;’s using some initial information collected by the devices in the network.
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Figure 2.1: A centralized localization system. The unknown node positions are computed using information
about the number of nodesin the system, the positiofiz,, y.]*} of the anchors (if available), and the set
of measurements collected between neighboring nodes.

The information available to localize the nodes consists of:
e A set of anchor nodes (optional)
o A set of measurementsM.

In applications with anchors, some of the node coordinates are known beforehand. If the network contains
m > 0 anchors labelead + 1 throughn + m, then the vector$r,, y.]', a = {n + 1,...,n + m}, are

assumed to be known at runtime. This dissertation does not investigate the effect of anchor placement on the
localization error. Previous research work has shown that the best results are achieved when the sensors are
located inside of theonvex hullof the anchorsJ49. In practice, the anchors should be deployed on the
perimeter of the network, preferably on the corners of the deployment. More details on anchor placement
and its effect of the localization error can be found in the literat8te 155 100Q.

The setM contains the measurements available between pairs of nodes in the network:

M = {m;; : a measurement between nadindj is availablel <i,j <n+m,i # j}.

Each measurement;; contains information about the relative position of nodasd;j. For examplem;;

can be a binary value that describes the proximity between two nodes, a value that measures their distance,
or an estimate of the angular position between two nodes. While it would be desirable to obtain measure-
ments between each pair of nodes in the network, the measurement hardware has a limited sensing range
that often restricts the number of data collected. In typical applications, nodes might only be able to col-
lect measurements with a few neighboring nodes located in their proximity. This restriction motivates the

use of collaborative localization schemes designed to compute the position of every device in the network,
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even those nodes outside the measurement range of the anchors. In contrast, non-collaborative localization

schemes requires that each node collect measurements with three or more anchors.

2.1.1 Assumptions
The work in this dissertation is based on the following assumptions:

e Symmetric Measurements.It will be assumed that all the measurements are symmetric. For example,
if m;; represents the distance between two nadasd j, the assumption requires that;; = mj;.
Asymmetric values will originate if nodesand j separately estimate the distance to the other node
using local measurements. Differences in the measurement hardware and localized interference might
results in valuesn;; # mj;. By requiring symmetric measurements, the two values will have to be

consolidated into a single estimate (e.g. by taking the average of the two values).

e Centralized Computation. Another assumption is that the available information can be collected and
processed at a central unit. The computational unit can be one of the devices in the network, or a
processing device external to the system. The information transmitted to this unit include the number
n of devices in the network, the set of measuremettand, when available, the number of anchor
and their coordinatels;,, y,]. It will be assumed that all the devices in the system are working correctly
and are capable of reporting their measurements to the central unit. This scenario will be useful to
characterize the intrinsic complexity of the problem with knowledge of all the available information.
Distributed localization schemes, which have received increasing attention during the past years, will be

discussed in SectioB.6 when analyzing the computational complexity of localization using SOM.

e Static Networks. The devices are assumed to be static. If nodes move, the measurematitaria
supposed to be collected within a time period during which the node positions do not significantly
change. Therefore, a scheme that operates under this condition will approximate the node positions at
the measurement time. In mobile networks, the static positions computed at consecutive time steps can
be used to implemenéarget trackingapplications that estimate the trajectory of each n@f¥e](]. In
such applications, the results can be improved by applying statistical filtering to the datd,4&lg. [
or by using the Kalman filter to combine the estimates with a dynamic model that describes the node
movement 113. While the target tracking represent an important problem with numerous practical
applications, the work in this dissertation specifically focuses on producing position estimates for static

node configurations.
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Under the assumptions stated, collaborative localization can be described using two different ap-
proaches that use results from graph theory and parameter estimation. The graph theoretical formulation,
which is described in the next section, is useful to characterize the computational complexity of the prob-
lem. The parameter estimation approach is described in detail in Chiafiesinalyze the effect of noisy

measurements on the position estimates.

2.2 The complexity of the Node Positioning Problem

A wireless network can be modeled as a grépk- (V, E'), where the set of vertexdé = {1,...,n +m}
contains an element for each node in the system, and thE sehtains an edgéi, j} if a measurement
between nodesandj is available (i.em;; € M). Based on the assumption of symmetric measureménts,
is a undirected graph.

Given a grapitz modelling a wireless network, localization is analogue to the problezmdfedding
a graphin an Euclidean space, a subject that has been extensively studied in the area of computational

geometry and graph rigidity. Findinggagaph embeddingonsists in determining a mapping function
p:V = RY

that uses constraints derived from the edge to assigns each vertex to a poskigminered is the dimen-
sionality of the embedding space. Depending on type of measurements available, different formulations of

the problem can be considered.

2.2.1 Embedding With Known Edge Lengths

When some of the inter-node distances are known, the measuremgrase estimates of the distance be-

tween two nodes. The graph embedding problem seeks a mappomgpatible with the available data:

||p(7’) - P(])H = Myj, V{Zvj} €L, (2.1)

where|| - || denotes the Euclidean norm. A coordinate assignment produced by the mapping function is called

realization The next two sections discuss two relevant problems related to graph embedding.
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Figure 2.2: Localization ambiguities in absence of reference points.

Conditions For Unique Graph Realization

The first fundamental problem is to determine sufficient conditions for unique realization of the@raph
First, it should be noted that in absence of absolute anchor nodes, every solution will be correct up to global
translations, rotations or reflections (see Fig2u®. The graph can be properly oriented by fixing the posi-
tions of three non-collinear nodes in the 2D space, or four such nodes in the 3D space.

Fixing the position of some anchor points, however, does not guarantee an unique solution. When
a graph is notigid, the embedding can generate multiple realizations compatible with the available distance

constraints. Figur@.3 shows two graphs where some of the vertexes can be moved while maintaining the

Figure 2.3: Flex Ambiguities: a) Node 5 can be moved continuously along a circular path; b) Node 2 admits
two positions compatible with the measured distances from nodes 1 and 5.
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a) b) c)

Figure 2.4: Discontinuous flex ambiguities. If edge 2-6 is removed, the graph can be deformed to obtain a
new realization where edge 2-6 can be reinserted without changing its length.

same distance from their neighbors. In the 2D space, a grapmwitides hagn — 3 degrees of freedom:

two degrees of freedom for each node, minus one for a global rotation, and minus two for translations along
thex andy axis. Since each edge introduces a constraint, a rigid graph needs ailea3twell-distributed

edges 92]. But the condition is still not sufficient for unique realization because rigid graphs are susceptible

of discontinuous motions. FiguB4shows an example of arigid graph that can generate multiple realizations
without violating the constraints on the edge lengths. If the edge between nodes 2 and 6 is temporarily
removed, the quadrilateral defined by nodes 1-3-4-6 can be deformed to generate a new configuration where
the edge 2-6 can be reinserted without changing its length. This condition is knogliscastinuous flex
ambiguity

Unique realization irR¢ requires a graph to bel + 1) connected andedundantly rigig meaning
that the graph is still rigid upon removal of an ed@€][ This condition is necessary and sufficient] for
unique realization in 2D and can be tested in polynomial ti#@. [ No similar results exist for graphs in
higher dimensions.

The characterization of uniquely localizable graphs is important when localizing ad-hoc networks
because nodes have limited sensing range and measurements are only possible with a few nearby nodes.
Intuitively, if a network correspond to a graghwith multiple admissible realizations, the localization results
produced by any localization scheme are always potentially incorrect. The propentig&l afraphs have
been used to determine conditions for unique localization of ad-hoc netw#Bk8(], or to improve the
performance of basic trilateration algorithms under noisy measurenidrs |

Most of the graph theoretical results consider scenarios in which no anchor nodes are present. When
some of the node positions are known, the distance between these nodes is implicitly known; therefore

the graph representing the network should be augmented with an edge for each distinct pair of anchors. In



14

application with anchor nodes, the condition for unique realizability] € connectivity and global rigidity,

should be checked against this extended grap#is [

Computational Complexity

In addition to possible ambiguities due to an insufficient number of measurements, the graph embedding
problem is computationally complex. Saxe has shown that embedding a graph in a Euclidean space is NP-
hard [L52. More recently, a number of authors have built on this result to characterize the complexity of the
problem specifically for sensor networks, which might contains anchor nodes and where the measurements
are likely to be affected by noise. Theoretical results are available for network localization using noisy dis-
tance estimated B, 19. In all the cases presented the problem is still NP-hard, unless the distance estimates
are noise-free and are available for a large-number of n&#49]. Embedding a graph using local angle

information is also NP-harc2p].

2.2.2 Embedding Using Connectivity Information

The results in the previous section apply to problem of embedding a graph with known edge lengths. Such
results are relevant to range-based localization scenarios, where nodes posses hardware such as ultrasound or
UWB transceivers to measure their distance from the neighbors. When a propagation model is available, the
distance can also be estimated using RSS measurements.

A different approach is used by range-free schemes that only redgmmectivityinformation. Sev-
eral graph theoretical results are also specifically available for proximity-based localization, which is the
application considered in Chapt@rof this work. An overview of the most relevant theoretical results has
been presented by O’Dell et alL3]]. In particular, a network with connectivity constraints can be modeled
as aunit Disk Graph(UDG), where two nodes are neighbdffstheir Euclidean distance is less than one. By
a proper coordinates scaling, this model can represent an idealized wireless network, where two nodes are

neighborsff their distance is less than the communication raRgsee Figure.5).

Unique Realization of Unit Disk Graphs

Similar to the previous case, the localization problem can be posed as one of embedding an UDG in an
Euclidean space. However, the same UDG can be generated by an infinite number of network layouts in
which the node positions are perturbed slightly without changing the connectivity between nodes. Therefore,

even in presence of UDG admitting an unique realization, the range-free solutions are intrinsically ambiguous.
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Figure 2.5: A Unit Disk Graph (UDG) used to model a network with connectivity constraints.

Computational Complexity

Embedding an UDG is NP-Complete in one dimension and NP-hard in two dimen&@nsHRecently,

the problem has been proved to be APX-hat@f, meaning that the solution cannot even be efficiently
approximated. In fact, there exist node configurations for which even an optimal algorithm cannot produce
an embedding with qualitybetter than\/?>/7 [89]. The only known algorithm with bounded error has
been proposed by Moscibroda et al1f], who addressed the problem of localization using connectivity

constraints (ideal disk connectivity).

2.3 Localization Schemes in Wireless Sensor Networks

The computational complexity of the graph embedding problem and the occurrence of ambiguous realiza-
tions help in understanding the challenges faced in designing collaborative localization schemes. Since the
node positions can only be approximated, many solutions have been proposed in the literature. Different
alternatives are the results of different trade-offs between system complexity and accuracy. For example, re-
liable estimation of distances and angles requires augmenting each node with dedicated hardware. Therefore,
range-based schemes are better suited to high-end applications requiring accurate positioning. On the other
hand, range-free approaches trade accuracy for simplicity by relying on proximity information that can be
collected using the radio transceiver, or inexpensive RFID 1@&s [

The next sections review some popular localization schemes. General survey papers on localization
and positioning techniques have been proposed by several author§ e}, [L19, 104]), and several books

on WSNs contain chapters on localization (elg.9, 141, 20, 160).

1Thequality of an UDG embedding is expressed as the ratio between the maximum distance of neighboring nodes and the minimum
distance of disconnected nodes. Ideally, the quality of the realization should be less than one.
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Figure 2.6: Localization in 2D: a) Trilateration: distance measurements from 3 non-collinear anchor points,
b) Triangulation: angle measurements from 2 anchor point, ¢) angle and range from a single anchor point

2.3.1 Range-Based Algorithms

An object in the 2D space can be localized when the following information is known: i) the distance from
three non-collinear anchor nodes (trilateration), or ii) the angle from two anchor points (triangulation), or
iii) the distance and the angle from a reference point (see Fig@e In the general case, not every node

will be able to make measurements with the minimum number of anchors; therefore distance and angle
information are often used to implement collaborative localization schemes (see Segfiowhen a suf-

ficient number of estimates has been collected, the node positions can be computed using multi-lateration
algorithms 150, semidefinite programmingfl], maximum likelihood estimatorslB6], or spring-mass re-
laxation approached 9. The next section discusses some popular approaches to obtain range and angle

information.

Ranging Using RF Time of Flight (ToF)

RF Time of Flight ranging techniques estimate the distance between two nodes by measuring the time neces-
sary for a radio packet to travel from the source to the destination. Implementation of ToF solutions requires
nodes equipped with fast clocks capable of nanosecond accuracy (RF signals &eehgter nanosecond).

In addition, the sender and the receiver must be accurately synchronized.

If synchronization is not feasible with high accuracy, range estimates can be obtained by measuring
the round-trip time of flight. This solution also requires a precise evaluation of the time used by the target
node to process the message and send a reply back to the source. Given these requirements, ToF ranging
techniques are better suited to high-end positioning systems requiring high accuracy. Application to WSNs

with nodes clocked at only few MHz is not possible.
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Ranging Using Time Difference of Arrival (TDoA)

Ranging using acoustic ultrasound is attractive to a wider range of applications mainly because of two rea-
sons: i) ultrasound transceivers are available as COTS components easy to interface with sensor nodes, and,
i) accurate localization can be achieved using low-rate clocks. Given the speed of sé2ndHa clock is
sufficient forl cm localization accuracy.

Because ultrasound ranging is relatively easy to implement on sensor nodes, several sdltions [
140, 171, 150 115 have been proposed where the source node transmits an ultrasound pulse and an RF
packet at the same time. The radio message, which travels at higher speed than the acoustic pulse, is used
to trigger the receiver node which in turn measuresTinge Difference of Arriva(TDoA) between the two
signals. The distance between the two nodes is computed by taking into account the TDoA and the difference
of speed between sound and the RF signal. The main disadvantages of ultrasound ranging techniques is that
sound propagation is affected by weather conditions, and the effective range is reduced to only a few meters
when the transmitter and the receiver are not aligned (in facts, many transmitters emit a conical directional
beam). This limitation, together with the cost of the additional hardware, suggests application to small-scale

sensor deployments.

Ranging Using Received Signal Strength (RSS)

The RSS ranging approach is less accurate than ToF and TDoA, but it can be implemented on sensor nodes
without specialized hardware. In fact, most of the transceivers used in wireless networks support collection of
RSS measurements upon reception of a radio message. The RSS, which measures the signal power received
by a wireless device, can be used to estimate the separation distance of the transmitting node. For example, in
an ideal free space, the signal decays at a ratig/@f; therefore the separation distance between two nodes

can be estimated once the transmission power and the RSS are known. In real case applications, the path loss
depends on the characteristic of the environment where the communication takes place. For example, the
attenuation can be as low &gd!-5 along straight corridors that act as a wave-guide, or it can be proportional

to 1/d* for near the ground transmission, where the component reflected by the ground destructively inter-
feres with the LOS (line of sight) component. Additionally, multi-path fading due to reflection, diffraction

and scattering of the RF signal causes variations in the received power and ultimately reduces the accuracy of
the RSS ranging approach. Despite the unpredictability of the radio signal propagation, ranging using RSS
is appealing because it can be implemented in low-cost applications. This approach is discussed in detail in

Chaptend.
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Figure 2.7: Centroid scheme: the position of the node to localize is given by the center of gravity (COG) of
anchors heard.

Angle of Arrival (AoA)

Angle of Arrival (AoA) estimation using beamforming or phased antenna arrays has not enjoyed much pop-
ularity in sensor network applications due to the cost and complexity of these technologies. However, re-
cent work on directional antennas has demonstrated that simple switched patch units can meet the size and
cost constraints of sensor nodes. Several localization algorithm uses AoA information to localize sensor
nodes 126 121, 175 111]. Additionally, base stations equipped with directional antennas can support local-
ization of mobile users in indoor spaces. This topic is covered in detail in Chagteparticular, a switched

beam antenna developed in collaboration with the Microelectronics Lab at the University of Florence is used

to implement a single-node localization system to track user movements in an indoor space.

2.3.2 Range-Free Algorithms

Range-free algorithmd4 b9 overcome the high cost and system complexity of range-based schemes by using
solutions that do not rely on dedicated hardware for distance or angle measurements. The location of each
node is estimated by exploiting proximity constraints inferred from radio connectivity or sensor readings.

In the first case, nodes that can successfully exchange radio messages are supposed to be within a distance
R, whereR is the communication range supported by the transceiver. In the second case, sensors can sense
natural or artificially generated phenomena that are used as basis for the localization process. The schemes
are further classified on whether they rely on the presence of anchor nodes placed at known position or not

(anchor-based vs anchor-free).
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Centroid

The Centroid B0] scheme is one of most simple, yet popular solutions proposed in the literature. It works
by assuming a set of anchor nodés= {a1,...,a,} placed at known location&e;, z;); j—(1,....n}- The
anchors periodically broadcast their coordinates to the nodes at unknown positions. After a sufficient number
of messages has been received, each unit determines its location by computing the average value of the anchor
coordinates heard. The computed position isGeater Of Gravity(COG) of a system of masses placed in
correspondence of the anchor nodes heard (see Righre

The robustness of the scheme is improved by maintaining statistics on the number of message re-
ceived from each anchor. Only anchor nodes with a number of successful transmission greater than 90% are
used in the computation. The localization accuracy of the centroid method is heavily affected by the number
of anchor nodes used. In a subsequent work, the authors propose a solution to adaptively place additional

anchor nodes to decrease the localization e [

DV-Hop Scheme

In the DV-Hop schemel]27], anchors flood the network with message beacons that are re-transmitted by
each node with the hop-count value increased by one unit. Using this approach, each node in the network
will eventually be able to compute the shortest path distance (in terms of hop count) from any anchor in the
network. To convert the path length into an absolute distance, the average hop count length is computed using

the following expression:

Zi: %: V(@i — )2 + (yi — y;)?
dhop = ZZ:ZJ:hZJ

The hop-count distance between any two anchors is used to divide the Euclidean distance separating them
(the anchors are at known locations). The result is an average hop count length that can be used to convert
an hop-count value into a distance value (see Figu®e Having determined the distance between three or
more anchors, each node computes its location using multilateration. The authors use a least square method
(the Householder method) to compute the actual position. The scheme works well when the path connecting
nodes and anchor nodes lie approximately on a straight line: in this case the hop-count distance is a good
approximation of the actual inter-node distance. When the network connectivity is low, or the deployment is
anisotropic, the performance degrades since the hop count distance is not a good approximation of the actual

distance (see Sectidn3for more details).
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Figure 2.8: DV-Hop scheme: the shortest path (hop-count, hc) is used to estimate the distance from a node x
to the anchor nodes in the network. The actual position is computed using multi-lateration.

A similar approach is proposed iiZ(Q, but in this case the estimation of the average hop-count
length benefits from a priori knowledge of the nodes density through the use of the well known Kleinrock

and Slivester formulag0] to determine the hop size:

—1 ™

+1 D)
—NJocal arccos(t —tv1 —t
dhop =T (1 + exp(—Niocal) — / exp(—2cal ( ))dt> ,

wherer is the average communication range angl,; is the local node density.

A.P.LT.

The APIT scheme proposed 64 is based on an approximate test to determine if a node is within the
triangular area defined by three anchor nodes. If a node were able to move, it would detect increasing
(decreasing) RSS levels as it get closer (farther) to an anchor node. The PIT (point in triangle test) determines
if a point is inside a triangle by checking for the existence of a direction that would bring the node closer to
all of the three anchor nodes (see Figar8a). If such direction does not exist, the node is considered to
be inside the triangle. In static deployments nodes do not move; therefore an approximate version of the
test (Approximated PIT) is performed by simulating virtual movements in the direction of the neighboring
nodes (e.g. by comparing the RSS values seen by adjacent nodes). The final node position is computed by
intersecting the area of all the triangles a node belong to and then computing the COG of such area (see
Figure2.%).

The authors of the the APIT scheme, which is not a truly range-free solution because based on RSS

comparisons, report extensive simulation results and comparison with the Centroid and DV-Hop schemes
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Figure 2.9: APIT scheme: a) Each node uses the APIT test to determine if it is inside the triangle area defined
by three anchors. b) The final position is the COG of the intersection of all triangles a node belong to.

presented before. Simulation results show that all the schemes previously mentioned perform well only
when a high number of anchor nodes is present and the network density is high. For uniform topologies
with connectivity equal to 8, each node needs to receive beacon messages from more than twelve anchors to

reduce the localization error undef R (see Figure.10.

SeRLoc

SeRLoc P4] also implements an area-based, range-free approach similar to Centroids and APIT. The an-
chors are equipped with switched-beam directional antennas capable of coveridgpthieorizon with
non-overlapping sectors. The antennas transexdtorizedbeacons to the network nodes along with an-
gular information about the beam used. Similarly to the other approaches considered so far, nodes compute

their position by determining the intersection of the beams seen from each anchor node (se@.Ejure

1 .
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Figure 2.10: Localization error of different range-free schemes reported by He é4l. [
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Figure 2.11: SeRLoc scheme: the anchor nodes genesettorizecbeacons using directional antennas. The
final node position is the COG of intersection area.

SeRLoc also addresses the problem of security in sensor network localization. Other algorithms designed to

implement secure localization services are presentetg 01, 103 95, 32].

Probability Grid

Proablity grid [L6]] is a localization scheme based on the assumption that nodes are placed on a regular
grid. It uses a similar idea to the DV Hop positioning algorithm since anchor nodes flood the network
with messages containing their position. Each node estimates the shortest path from each anchor node and
then computes the probability of being on each intersection point of the grid. The location with maximum

probability is chosen as an estimate for the node’s position.

MDS

Multi-Dimensional Scaling (MDS)J5] is a technique that has been extensively used in psychometrics and
many other applications to visualize multidimensional data sets. MDS implements a projection technique (to
a 2D or 3D space) capable of preserving the similarities present in the original data set. The use of MDS
to solve the localization problem in WSN was originally proposedlid]. The node positions in the 2D

space are computed by first creating a n matrix containing the squared distances between each node

in the network.. If the node distances are not available, the matrix is generated using the hop-count value
between each node. The final coordinates are obtained by first double-centering the distance matrix and then
using singular value decomposition and retaining the largest two eigenvectors (three for 3D localization). The
method has been successively extended to work in a distributed fagkigryfl, 40, 167], motivated in part

by the scarce performance with anisotropic layouts like the ones described in $e8tion
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Figure 2.12: Lighthouse: a parallel beam is generated by a rotating base station. Nodes determine the
distance from the base station by timing the light beam.

LightHouse

The LightHouse 144 approach exploits the sensing capabilities of nodes. A base station mounted on a
rotating support propagates a beam of light having wid{the beam is generated using an array of laser
diodes) that is detected by the light sensors mounted on each of the nodes (se@ Bure

Each node computes the distardeom the base station by measuring the timg.,,) during which

it sees the light beam:
b b

- 2sin(ay /2) - 2sin(mtpeam /tiurn)’

whereb is the width of the beam, ang,,.,, is the rotation period. Localization in the 2D space is achieved

by using three base stations mounted on orthogonal directions.

SpotLight

A similar approach to Lighthouse is used by the SpotLight systesf]] which also relies on synchronized

light events to localize a set of nodes. Three different scenarios are analyzed (se@Higur® Point scan:

if the nodes lies on a straight line (e.g. nodes deployed along a road), they can be localized by a base station
that emits a beam of light that is moved at constant speed along the line where the nodes lie. Since each
sensor will detect the light at a different time, the node distance from a reference point can be computed by
measuring the detection time and dividing it by the beam speed. 2) Line scan: some devices (e.g. lasers)
can generate lines of light that can be used to localize nodes on a 2D plane. A first line scanning in one
direction (e.g. vertical) allows the nodes to measure their distance from the vertical origin of the deployment
area (again, the distance is inferred by the time a node detects the light beam). 2D localization is achieved by
a second beam that scans the network in direction perpendicular to the first one (e.g. horizontal). 3) Finally,

the third method uses a video projector to illuminate the whole deployment area, which is partitioned in non-
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Figure 2.13: SpotLight: localization is implemented by timing the arrive of a light beam. Three options are
available: Point Scan, Line Scan, and Area Scan.

overlapping zones. Each zone is illuminated with an unique pattern light, where the presence of light denote
a “1” bit and dark is “0". The temporal sequence of light/dark event is used to transmit a code representative

of each area in the network.

2.3.3 Scene Analysis Algorithms

The major problem in using the RSS signal to estimate a distance is that the signal propagation is affected
random phenomena such as multipath fading, shadowing, scattering and interferences from other source
operating in the same band. The problem is especially severe in indoor environments, where the presence
of obstacles (e.g. large metal cabinets, doors, windows, ceiling fans) increases the variability of the signal
strength. A localization approach that tries to overcome these difficulties is based on generating RF maps of
an environment and then using these maps to locate moving people or obfedidd. The method requires

a setup phase during which a mobile device is used to record the signal strength from several base stations
present in the network. The result of this phase is the creationRF fingerprintsdatabase that is later

used to locate people or objects within the mapped environment. Scene analysis methods have the advantage
that can adapt to complex environments and provide acceptable performances when a sufficient number of
base stations is available. These methods are also computationally inexpensive, but, on the other hand, they
need a time consuming setup phase that needs to be repeated every time there are substantial changes in the

environment (e.g. new base stations are added, large piece of furniture are moved, etc.).



Chapter 3

Range-Free Localization Using

Self-Organizing Maps

Introduced in the early 80’s, thgelf-Organizing MagSOM) [82, 83] is a neural network where each neuron
contains a weight vector that is updated during the training phase of the map. The neurons are arranged in
regular geometric structures, typically two-dimensional lattices with rectangular or hexagonal patterns like
the one in Figurs.1a.

As shown in the following sections, the structure of the map and the learning algorithm result in a
versatile architecture that has found numerous applications in the context of exploratory data analysis, pattern
recognition and vector quantization. An extensive bibliography of SOM papers has been initially compiled
by Kaski et al. 9] and successively updated by Oja et 4B7].

This chapter uses the SOM technique to implement a simple and elegant solution to the range-free
localization problem in ad-hoc wireless networks. The use of SOM for node localization is first described
in details; then it is evaluated using extensive simulations and comparison with some popular range-free

schemes.

3.1 The SOM Learning Algorithm

SOM implementainsupervisedearning, meaning that the map is able to learn the properties of the training
set without the aid of labeled samples or reward functions. Assuming that the information to learn is con-

tained in a large and potentially continuous input set with elements R¢, the map produces a compact
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Figure 3.1: a) Self-Organizing Map with hexagonal pattern; b, c) two steps of the training algorithm.
representation of the training set using a finite number of reference veeforsR?. The weightsw;, also

called modelsor referencevectors, are initialized with random values and updated by executing multiple

iterations of the following three-step sequence:

1. Sampling: A sample is extracted from the training set and presented to the network (Lgtlenote

the sample at the current iteration.

2. Competition: The samplex(n) is compared with the map weights using a distance function. The
neuron whose weight is closerxdn) wins the competition and become tBest Matching Uni{BMU)

(Figure3.1b). If the distance function is implemented using the Euclidean distance, the election rule is:
¢ = argmin [|x(n) — w;(n)]|, 3.1)
J

wherec denotes the index of tremvu, and||-|| is the Euclidean norm.

3. Adaptation: The weight vectow, associated with themu is updated to increase its similarity with the
input sample. During the adaptation process,Bie activates nearby neuronsopperative learniny

allowing them to learn some of the information contained {n). The update rule is:
w;(n+ 1) = wj(n) + 1 he;[x(n) — w;(n)], 3.2

wheren is the globalearning rateparameter antl.; is the value oheighborhood functiothat controls

the adaptation for neurons close to BMuU (see Figures.ic).
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Figure 3.2: a) Exponential scheduling for the parameterb) neighborhood function at different number
iterations; c) portion of a SOM showing the map distances from the BMU.

3.1.1 Learning Parameters

For ensuring convergence, the learning ratehould be computed using a functieiin) that decreases
monotonically with the number of iterations. Optimal choices)6f) have been discussed in the litera-

ture [118 84]; however, in practice, the exact form gfn) is not a critical factor in the SOM technique.

The update rule3.2) is also controlled by the valuk.; that determines the amount of information
learned by neurons close to thU. The valueh.; can be constant for all the neurons within a given distance
from BMU when astepneighborhood function is used, or it can be computed usisg@othing kernelAs
shown in Figure3.1c, a common choice is to calculdig; by using a Gaussian function:

d )2
hej = exp (—ma;icz’j) ) , (3.3)

wheredmap(-, -) measures the distance on the map between two neurons, and the paracmtgols the

width of the smoothing kernel. Similar to the learning rate, the parametgnould be computed using

a functiono(n) that decreases monotonically. Large valuesraduring the initial iterations result in a

wide neighborhood function that allows the map to quickly organize the neurons, while the smaller values
at the end of the training determine localized changes, allowing the map to describe different input features.
Figures3.2a,b show an example of exponential scheduling for the parameted the resulting neighborhood
function at iterationn; = 500 andny, = 1500. Figure3.2c shows part of a hexagonal SOM with labels
indicating the distances between tseu and nearby neurons. Whenever the neurons are updated, the map
distance and the current value @fare used to compute the vallg; that controls the adaptation level of

each weight.
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Figure 3.3: 10 x 10 SOM trained with samples from the RGB color space.

3.1.2 Properties

Some of the SOM algorithm’s properties can be illustrated with a simple example. Assume the samples from
the RGB color space in FiguB3a are used to train 0 x 10 map. Both the samples and the map weights are
represented by vectofs;, g;, b;] containing the the red, blue and green color components. Fiy8teshows

the initial SOM with weights randomly assigned. After training the map with a few thousands samples from
the input space, the final weights assume the values shown in HBdiatelhe results illustrate the following

properties:

1. SOM implements grojectiontechnique: the three-dimensional input space is mapped onto a two-

dimensional surface.

2. SOM implements &ector Quantizatior(VQ) technique. In this case, 100 vectors were selected as

representative values of a much larger input set.

3. SOM generatewmpologically orderedesults, in the sense that similar information is mapped to nearby
locations. This property emerges as a consequence of the update rule: since adjacent neurons are sub-

jected to similar weight changes, they eventually converge to similar values.

3.2 Localization using SOMs

As seen in the previous section, a SOM can be used to process a large amount of multi-dimensional infor-
mation and represent it using a compact, low-dimensional model. After training a map, the same election
rule 3.1) discussed in SectioB.1 can be used to translate new samples into their correspondaepooks

(vector quantization) or to project points onto a two-dimensional surface.
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These properties has been used in the past to implement localization schemes for mobile robots in
unknown environments/3, 51]. As the robot explores a new space, the multisensory data collected by
on-board sensors are fed to a SOM that organizes them on the basis of their similitude. Assuming that
sensor readings are correlated with their positions, the SOM defines a virtual map for the space just explored:
the robot’s location is given by themu that matches the current sensor readings. Ertin and Prigidy [
have applied the same concept to the localization problem in WSNSs. In their work, synchronous snapshots
gathered from the sensors are used to train a SOM, producing a set of weights that define a grid of so-
calledvirtual sensors The node coordinates are approximated by the grid position of the virtual sensor
that matches the actual sensor measurements. The authors suggest possible application to target tracking.
A similar approach has been used by Sakurai etlaf][for human tracking in an indoor space, and by
Xu et al. 173 for localization of mobile users using RSS from cellular base stations. Finally, Takizawa et
al. [163 have proposed a range-based scheme based on an update rule similar to the one used by SOM. These

approaches are discussed in more details in Se8tin

Proposed Approach

The solution described in this section differs from previous SOM approaches because it does not assume
the availability of sensors readings or range estimates, and it does not use the concept of virtual sensors.
The proposed solution uses proximity information derived by radio communication and explicitly compute
each node’s position during the map’s traininghis application of SOM to the node positioning problem is

inspired by two simplifying assumptions:
1. The sensor distribution is (approximately) uniform in the deployment area.
2. Nodes that are radio neighbors are relatively close to each other.

Successively, these two assumptions will be relaxed by considering non uniform deployments and
more realistic propagation models; however 1) and 2) are useful to illustrate how the SOM technique leads to
an intuitive localization scheme.

Imagine that the deployment area is the square region in Figideeand that a large number of
points [z;,y;]* are sampled inside this area and used to train a SOM, $ay & square map. Since the
training samples and the map vectors have the same structure, each weight defines a position in the 2D plane.
Figure3.4b shows the values of the random weights, where segments of line are used to link the position of

adjacent neurons. As the map is trained, the weights assume the values shown 8 Bgy@ir&imilarly to
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Figure 3.4: 5 x 5 SOM trained with random samples from a 2D training set.

the example of Figur8.3 the SOM weights approximate the input distribution, and the weights of neurons

that are close on the map converge to similar values. Note that the coordinate assignment iB.Eigsire
compatible with the positions of an hypothetical 25 node WSN that meets the two assumptions stated at the
beginning of this section. More in general, the weights of a SOM trained with points from a 2D uniform
distribution can be used as an approximation for the positions of an arbitrary set of wireless nodes. For this
purpose, the number of neurons in the SOM needs to match the number of nodes in the WSN, and the map
has to be organized in such a way that neighbor nodes are associated to adjacent neurons. The next sections

formalize the use of SOM as a tool for sensor network localization.

3.2.1 System Model

Consider a connected network withnodes placed at unknown locations. None of the nodes is equipped
with hardware for position, range or angle estimation, and no assumption is made regarding the availability
of sensors; however, nodes can determine their radio neighborgldgét j) denote théhop distancei.e.

the minimum number of transmission required to transfer a message from a tooa@ode;.

3.2.2 Modified SOM Model

The unknown node positions are computed using a SOM witteurons. Each neuropcorresponds to
a sensor node and contains a weight vestgr= [z;,y;]*. This vector, initially picked at random, will

eventually contain the estimated location for the corresponding .nddiee map is trained using the same
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Figure 3.5: Correspondence between the nodes in a WSN (left) and the neurons in a SOM (right). The
arrangement of neurons in the SOM describes the neighborhood relationship in the WSN. The weight vector
of each neuron contains an estimate of the corresponding node coordinates.

algorithm described in Sectio®.1, but with a modified neighborhood function to account for the spatial
relationships among the sensor nodes. The new neighborhood function use the hop countdjisianae

distance in place aiimap:
-\ 2
hej = exp <—dhOp(c’])> . (3.4

202

The use ofdyep implicitly defines a lattice of neuron with a structure that reflects the hop-count distance
between each pair of sensor nodes (see FigLhe

Having described the structure of the weights and the map, the last step involves the choice of a
proper training set. To understand how to generate the training samples, note that since no reference points or
range information are used, the SOM'’s results will be correct up to global translations, rotations, flipping or
scaling (see Sectioh?). This is a consequence of input used and not of the SOM technique; in other words,
any range-free, anchor-free scheme will generate similar results. While these ambiguities might appear as
a potential complication, in reality they simplify the algorithm’s implementation. In fact, since the result
will be expressed in an arbitrarily coordinate system, random samples from an arbitrary distribution (e.g.

0 < z,y < 1) can be used to train the SOM.

3.2.3 Localization Algorithm

The algorithm is centralized; therefore each node needs to communicate the list of its radio neighbors to the
unitin charge of the computation. Using this information, the hop-count distances between each pair of nodes
are computed by first representing the network as a graph, and then applying the Dijkstra or Floyd algorithm.
Assume hop distances stored in a maifix with elementgdy];; = dnop(?,7): The matrixDy, is the only

input parameter to the algorithm.
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Algorithm 1: 2D SOM-V Localization

Input: matrix Dy: hop count distances among nodes
Output: [z;,y;] for j =1,..., N: node positions

% Parameter Initialization

=

: Mmax = 0.1; Nmin = 0.01;
. Omax = max{Dp}/2;  omin = 0.001
2,7

N

3: for all nodesn do
4. [zn,yn]T =random()
5: end for

% Main Loop

6: forn=1:toN_ITERdO
7. 1N = Nmax — P(Mmax — Ymin)/(N_ITER — 1)
8 0= 0max— N(0max— Tmin)/(N_ITER — 1)
9.  (z,y) =random()
100 c=argmin||(z,y) ~ (z;.,)]
11:  for all network nodeg do

12: hej = exp (—Dn(c, j)?/20?)

13: [z, yj] +=nhe;([z,y] — [25,y5])
14: end for

15: end for

Algorithm 1 contains the pseudo-code of the localization scheme. The learning parartexer
and the radiug (n) are scheduled using a linear function that decreases with the number of iterations (see
lines 7 and 8). The version of the code described by Algorithm 1 is dubbed SOM-V, because, as discussed
in Section3.4, it generatesirtual coordinates Alternative versions (SOM-A, SOM-R) are discussed in

Section3.5and Sectiorb.2

3.3 Simulation Model

The proposed localization schemes have been validated using extensive simulations that were generated in
the attempt to model realistic network configurations. Before presenting the results of such experiments, the

simulation model is described.
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Figure 3.6: a) The noisy grid model; b, c) two 100-node networks with different perturbation factors.

3.3.1 Placement Model

The simulation scenarios are generated accordingnwsy griddeployment model where the node positions
correspond to the intersection points of a regular grid with rows and columns spaced by a fésxder
Figure3.6a). To capture the random nature of an ad-hoc deployment, each coordinate is perturbed with
samples from normal random variable&;, A, ~ N(0,0x). The parametes, controls the amount of
noise:

on = PFr, (3.5)

wherePF is the Perturbation FactorparametergF > 0) that defines the magnitude of the noise relative to

the grid spacing. Figures3.6b,c show two 100 node topologies with increasing values of the pararreter
Simulations in SectioB.5.4also consider topologies with node positions sampled fratapendent

and identically distributedi.i.d) random variables. However, the noisy grid model is sometimes more ap-

propriate to describe typical WSN deployments. For example, in most applications such as environmental

monitoring and precision agriculture, some control is exerted to ensure an approximate uniform coverage

of the monitored area. The noisy grid model also makes it easier to generate connected networks with low

connectivity (e.g. 4 or 5), while in the random model, the probability of having connected networks rapidly

goes to zero as the communication range is redug&ld |

3.3.2 Connectivity Model

Initially, neighbor nodes are defined on the basis ofd&al radio model If R denotes the maximum com-
munication radius, then two nodes are considered “connected” if their separation distance is |Bssatithn

“disconnected” in the other case. Although this model over-simplifies the nature of wireless communication,
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the use of ideal connectivity is intuitive and facilitates comparison with previously published results. A more

realistic connectivity model will be considered in Sectbh.a

3.3.3 Error Metric

The performance of the proposed schemes is evaluated by computing the average localization error relative

to the communication range:

Avg. Error R) = %zn: V& - Ii)szr (: - yi)z, (3.6)
=1

wheren is the number of nodesz;, §;) are the estimated coordinatés,, y;) are the true node positions,
andR is the communication range. Later simulations will use a different error metric to facilitate comparison

with the Cramér-Rao bound (Sectidri.?).

3.4 Anchor-Free Localization: Virtual Coordinates and Geo-Routing

The SOM-V code described in Secti8r2.3implements the basic version of the SOM localization algorithm.
Since only connectivity information are used, SOM-V generstasal Coordinateq116| that describe the
relative location of nodes, in the sense that nodes with similar coordinates are physically close. Virtual coor-
dinates, which facilitate network tasks such as location-based queries and proximity-based service discovery,
have found prominent application in the area of geo-roufi®90, 142. By knowing the relative node posi-
tions, these schemes achieve efficient packet delivery without the memaory overhead of table-driven protocols
or the latencies of on-demand approaches.

A direct comparison between virtual coordinates and the ground truth is not pésshsesfore
the performance of geo-routingscheme is used to evaluate the quality of the virtual maps produced by
SOM-V. A similar approach has been used to evaluate other range-free scheme2% .and [64]. The
routing scheme used to validate the localization results implements a girepldyapproach: given a source
and a destination pair, each intermediate node forwards the message to the neighboring node closest to the

destination. The selection rule is:

next_hop= arg Hgn ||(37na yn) - (xdest; ydest)” ) (3.7)

1 For range-based localization algorithms that operate without anchor nodes, some quality metrics based on the inter-node distances
are available (e.g. see ti®obal Energy RatidGER) in [139). However, in the case of range-free localization, the results are not only
possibly rotated or flipped, but also arbitrarily scaled; therefore error metrics bases on the inter-node distance are not applicable.
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Ground Truth Routing example using the SOM-V virtual map
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Figure 3.7: a) Ad-hoc network topology; b) Routing path discovered by a geo-routing scheme using the
coordinates produced by SOM-V. Note: the two maps has been aligned using the three reference marks on
the plot, but this step is not necessary for routing.

where(z.,,, y,) are the virtual coordinates of the neighboring nodegss; ydes) are those of the destination,
and||-|| denotes the usual Euclidean norm. This basic scheme simply gives up if it is unable to get closer to
the destination; however, it defines an useful comparison baseline for more advanced strategies.

Figure3.7a represents a 64 node network deployed in a square region witBlsm@ndPF param-
eter equal to 25%. The goal is to discover the routing path between two nodes in the corner of the network.
This sample application first uses SOM-V to compute a virtual map of the network, and ther8 %¢s (
find the route between the two nodes. Fig@ré shows the virtual map together with the routing path.
The discovered path path is optimal in these in the sense that its length is equal to the minimum hop count
distances between the nodes.

A more exhaustive simulation experiment considers 50 topologies similar to the one in Bigure
with PF uniformly selected in the interval between 10% and 50%. For each topology, the&rplés(used
to route messages between 50 pairs of randomly selected nodes. Bdaraad3.80 show the simulation
results for different connectivity levels obtained by varying the communication fang&e delivery ratio of
the scheme using the SOM-V coordinates is close to the value achieved when using the true node positions,
and it rapidly approaches 100% as the connectivity increases. The results show no substantial differences
between the lengths of the routing paths produced using SOM-V and the length of those computed using the

true coordinates. The two plots are almost completely overlapping in Fay8re
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Figure 3.8: Average performance of a greedy geo-routing algorithm using the true coordinates and the
virtual maps produced by SOM-V: a) Delivery Ratio; b) Path Length. The path length plots (right) are
almost completely overlapping for the two cases.

3.5 Anchor-Based Localization: Absolute Coordinates

Virtual coordinates are useful to implement efficient packet routing and other network tasks, but some ad-hoc
networks require absolute positioning. For example, in a disaster relief application, knowing the sensor posi-
tions is necessary to accurately pinpoint the location of an event and provide prompt assistance. To convert
relative node positions into absolute coordinates, at least three non-collinear anchor points are needed for the
two-dimensional case. When this information is available, the virtual maps are aligned by applying a linear
transformation that resolves rotational, scaling and flipping ambiguities. aFpissterioritransformation

can be used to align the results of any anchor-free localization technique, including SOM-V. The basic SOM
algorithm, however, can be modified to include anchors’ information in the training phase of the map. This
modification not only generates absolute coordinates, but also increases the scheme’s accuracy for networks

with low connectivity.

3.5.1 Exploiting Anchor Information: The SOM-A Scheme

Theanchoredversion of the algorithm, SOM-A, is derived from the basic version by applying three modifi-

cations:
1. Weights corresponding to anchors are initialized with the true node positions and never updated.

2. Whenever an anchor node is elected@ms, the training sample at current iteration is replaced with the

anchor’s position.
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3. The training points are sampled from a distribution whose values are compatible with the deployment

area’s coordinates.

The first two modifications ensure that weights corresponding to anchors remain in their position. The pres-
ence of these fixed points facilitates the map organization during the initial iterations and, assuming three or
more anchors, allows SOM-A to generate maps that do not require alignment.

The last modification ensures that weights converge to meaningful values. Different from SOM-V,
working with absolute coordinates requires to take into consideration the physical dimensions of the de-
ployment area. In SOM-A, the sampling area is obtained by considering the rectangle enclosing the anchor
locations; anchors are assumed to be located near the perimeter of the deployment area, preferably close to
the corners. If the network contains anchor nodes placed at Iocatio[né’“), yff)] fork =1,...,m, then,

the training pointx; = [z;, y;] are generated by sampling an uniform distribution in the following intervals:

x; € [ — AL M L A
(3.8)

Yi € [y((zmin) - Aay; ygmax) + Aay]a

wherez(™™ = min{z{"}, 2 = max{z{"'}, and the valueg™™ andy(™>) are computed simi-
larly. The sampling area is expanded in each direction by fakigrandA,,, to compensate fdyorder effects
that are notorious in the use of SOM technique. Border effects arise because boundary neurons have fewer
neighbors than inner neurons; as a result, the weights along the perimeter of the map are slightly contracted
toward the center. To compensate for this effect, the sampling area is slightly expanded by experimentally

determined factord,, andA,,:

A x(max) _ :L.(min) dA y(max) _ y(min) 3.9
o = 22 gp oy = 2——-a )
vn+m—1 Y vn+m—1 (3.9)

wheren + m is the total number of network nodes (anchors and non-anchors).

3.5.2 Comparison Between SOM-A and SOM-V

Figure3.9reports the average localization error for the same set of 50 networks used in the previous section,
assuming the presence of three and four anchors in the corners of the map. The results of SOM-V, which
are obtained using the-posterioritransformation described earlier, are compared against those of SOM-A.

The plots show that the anchored version is more effective in localizing network with low connectivity. For
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Figure 3.9: Average localization error for a set of 50 random topologies with 64 nodes deployed m &
30 m square region.

networks with connectivity equal to four, SOM-A reduces the error by 52% when three anchors are present,
and by 32% when four anchors are available.

Although comparison with other schemes is deferred to Se&tibd the SOM-A’s results in Fig-
ure 3.9 show a localization error as low 8s3 R for networks with average connectivity equal to five and
using only 6.25% of anchors nodes (4 anchors out of 64 nodes). These figures suggest SOM-A as a suitable
approach for localization in low-cost deployments with low connectivity and a small percentage of anchor
nodes. These networks are likely to be exploited for applications such as environmental monitoring and pre-
cision agriculture, where slowly varying signals such as temperature and humidity are monitored over large
areas. In these applications, nodes are often placed in sparse configurations to reduce the installation and

maintenance costs.

3.5.3 Weight Initialization and Convergence

The results in Figur8.9were obtained using random initialization of the weights and 2000 training samples.
Existing SOM literature (e.g8H4]) shows that different initialization strategies might influence both the con-
vergence speed and the topological accuracy of the solution. Understanding the effect of the initial weights
and number of iterations on the final results is important because the scheme may execute on nodes with
limited computational resources.

The previous simulations were repeated by varying the number of iterations and using different
initialization strategies. In addition to random initialization, alternative initialization strategies are considered:

the AFL and LINE initialization schemes. The AFL scheme has been proposed by Priyanthda 8gab [
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Figure 3.10: Average localization error as a function of the number of iterations used in training the map.
The results were generated using the same set of networks discussed in the previous section.

generatdold-freeinitial configurations for a spring-mass based algorithm; the LINE initialization is simple
scheme that aligns the initial weights along a line. In a previous work at the IMPACT lab, this heuristic was
found to be effective in reducing the occurrence of maps with large topological es&pr&[nally, a baseline
comparison is obtained by considering the error when the weights are initialized with the true node positions.

Figure3.10a shows the SOM-V's error as a function of the number of iterations for networks with
average connectivity equal to four. This value is considered because preliminary simulations have shown that
the differences between alternative initialization schemes are most noticeable for topologies with low con-
nectivity. Even in this case, however, the error plots converge to a similar value as the number of iterations
increases over 1000. The weak correlation between the final error and the initial weights is a consequence
of training the map with a large neighborhood function. In Algorithm 1, the initial standard deviation for
the Gaussian kernel is equal to the radius of the netwegly = max (D;,) /2 . Such large value causes
strong interactions among the neurons; therefore, during the initial iterations, the weight vectors will assume
a similar value close to the centroid of the input distribution, regardless of the initial positions. If the neurons
were already partially ordered, the convergence speed of the map could be improved by using a smaller value
for omax to preserve some of the initial information. The work in this dissertation do not pursue this strat-
egy because using a narrower neighborhood function will occasionally result in maps that are only partially
ordered (see Figurg11).

Figure 3.1 shows the SOM-A’s error for the same set of simulations used in the previous case.
When the node positions are computed using SOM-A, the differences between alternative initialization strate-

gies become negligible even for a low number of iterations. Given the minimal differences, the results only
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Figure 3.11: Localization example. If the neighborhood function’s initial radius is not wide enough, SOM
will occasionally produce incorrect results (case c). This problem is avoided by using the values in Algo-
rithm 1.

show the error obtained using random initialization for networks with low and medium connectivity. The

error decreases similarly in both cases and stabilizes around 3000 iteration for connectivity equal to four, and
about 2000 iterations when the connectivity is equal to ten. Since the execution time of the algorithm depends
on the number of training samples (i.e. the number of iterations), adjusting this parameter provides a mean

to optimize the trade-off between accuracy and resources spent (see Sdijtion

3.5.4 Comparison With MDS and DV-HOP

SOM-A is compared with two popular range-free solutions, the DV-HOPMaulti Dimensional Scaling
(MDS) schemes described in Sectds3.

Figure3.12 shows the localization results for four sets of 50 random topologies with 64 nodes de-
ployed in a square region with side equal3tom. Three of the four sets were generated using the noisy
grid model described in Sectidh3.1with PF = {10%, 25%,50%}, while the last set contains networks
with node positions sampled fromdependent, identically distribute@i.d.) random variables. Note that
networks withpF greater than 50% are qualitatively similar to random deployments.

The plots in Figur&.12show that the results generated by SOM-A and DV-HOP have a similar trend,
but SOM-A consistently produces a lower error. The SOM-A’s results, which were are obtained using random
initialization and 5000 training samples, are 27% to 45% more accurate than DV-HOP. The differences are
more marked for networks with perturbation factor equal to 10%.

In comparing the performance of SOM-A with MDS, the results depend on the network connectiv-
ity. The difference are negligible for networks with connectivity greater than ten, but SOM-A significantly

outperforms MDS for sparse networks. When the connectivity is equal to four or five, the SOM-A’s error

2The Isomap version that that uses the hop-count values as a distance measure between pair of nodes isl®luated [
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Figure 3.12: Average error achieved by SOM-A, DV-HOP, and MDS in localizing sets of 50 networks with
increasing perturbation factors. All networks have four anchors.

is approximately between 40% and 60% lower than the MDS’s error. In general, when the connectivity is
low, the hop-count distances are poor approximations of the true node distances, especially for nodes that are
several hops away. Since MDS equally weights all the available distances, including those with large hop
values, the error in sparse networks are usually large. SOM-A does not exhibit this drawback because nodes
that are several hops away have a weak effect on each other’s positions.

A second set of experiments localizes sets of 25 random networks with increasing numbers of nodes.
The connectivity values are fixed to five and ten (see Figutd). In the first case (connectivity = 5),
the simulated networks (random deployment) contain up to 200 nodes; given the low connectivity value,
above this size it becomes progressively more difficult to generate connected networks. In the second case
(connectivity = 10), the networks include up to 350 nodes. The SOM-A technique ensures a localization error
aroundl.0 R up to 200 nodes and connectivity equal to five. If the connectivity is increased to ten, the error of

SOM-A maintains belovd.5 R for networks up to 350 nodes. The results obtained for the other two schemes
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Figure 3.13: Average error of SOM, DV-HOP, and MDS in localizing sets networks with increasing number
of nodes and four anchors: a) Network connectivity equal to five; b) Network connectivity equal to ten.

are consistent with those published by Niculescu and NE2B, [12§ for DV-HOP, and those reported by
Shang et al154 for MDS. The error generated by both schemes is significantly higher than the SOM-A'’s

error, especially for networks with low connectivity.

3.6 Computational Complexity Analysis

The SOM-V and SOM-A variants are centralized schemes, but the low communication and computation
requirements make them suitable for sensor networks where nodes have limited resources. An analysis of the
computational complexity and memory requirements follows.

The SOM algorithms operate on the basis of connectivity information; therefore each sensor needs
to communicate the set of its radio neighbors to the unit in charge of the computation. Assuming two-byte
node IDs (up t65536 nodes), the information can be transmitted using a fairly small size radio messages.
For example, in a network where the average connectivity is 7, only 14 bytes need to be transmitted by each
node. The total traffic can be further reduced by means of in-network data aggregation techniques.

Messages with neighbor sets information are used to generate the adjacency matrix of the undirected
network graph requiringn(n — 1)/2]/8 bytes of memory space, and then to computelthematrix with
the hop count distances between nodes. The solution is obtained by repeatiegutions of the popular
Dijkstra’s algorithm or using the Floyd’s scheme. The complexit@{®3) in both cases, while the table
needs enough storage spacerfr — 1) /2 elements. The memory requirements for this table can be reduced
by taking into account the maximum hop count distance between any two nodes (i.e. the network diameter).

The proposed simulations show that most of the 100 node networks with connectivity equal to six have a
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diameter lower than 16. Using 4 bits to code the hop-count distances, the size of the table is reduced to
n(n — 1)/4 bytes of memory. Even if some hop distances were larger than 16, replacing the actual value
with the upper limit does not have a noticeable impact on the algorithm because the interactions between
units far from each other are weak. Finally, the algorithm needs to reserve the memory space to store the
node coordinates (i.e. the SOM weights). Assuming quantized values represented with 2 bytes, the total
occupation istn bytes.

As for the computational complexity of SOM localization approach, the iterative solution allows a
trade-off between accuracy and execution time (see Se8t08. Each iteration requires comparisons to
compute thesMu, and the application of the update ruB3?) to the map weights. Considering that the radius
of the neighborhood function shrinks from a value initially equal to the network radius and then goes to zero,
the average number of weight updates is approximaté®y Note that, as the width of the neighborhood
function shrinks, the running time of the solution could be further reduced by only applying the update rule
to those weights that are close to #neu.

Fixed the maximum number of iterations, the SOM training algorithm has linear complexity O(n).
However, the simulation results presented in this chapter (see RBdl@eand Chapteb (see Figures.5 at
pag.101) show that increasing the number of iterations for larger number of topologies can reduce the final
average error. If the number of iterations is not fixed at priori, but selected as a functipthefcomplexity
of the algorithm is no longer linear.

Although increasing the number of iterations can improve the quality of the results, using a large
number of iterations is not necessary to ensure the convergence of the map. Since the learning parameters are

decreased monotonically, the convergence to a stable weight configuration is always ensured.

3.7 Implementation on a Resource-Constrained Sensor Node

The SOM algorithm can be easily implemented in any programming language and it converges to a solution
in a limited amount of time. For example, it takes about 0.3 seconds to localize a 100 node network by
executing 5000 iterations of MATLAB code on a PC witl2.86 GHz CPU. More interesting is to evaluate

the execution time on embedded hardware commonly used in sensor network applications. The SOM code
was implemented using nesC/Tiny®©&hd executed on a TelosB3g, a popular COTS sensor node with a

16-bit RISC microcontroller featuring 10KB of RAM, 48KB and working at the frequency idHz. The

Shttp://www.tinyos.net
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N. Nodes Memory Exec. time Dijkstra Exec. time for 1000 iter

36 0.42 KB 1 sec 62 sec
64 1.48 KB 6 sec 102 sec
100 3.42 KB 22 sec 156 sec

Table 3.1: Memory requirements and execution time of the SOM-A algorithm on a TelosB node equipped
with a 8 MHz microcontroller.

algorithm in Sectior3.2.3was slightly modified by replacing the Gaussian neighborhood function with a
triangular function. The modified neighborhood function produces similar results using less computation.
Table 3.1 reports the memory occupation of the data structures described above and the execution
time to compute thé;,, matrix and then to perform 1000 iterations of the localization algorithm. Even using
these highly constrained nodes, it only takes about 3 minutes to localize a network with 100 nodes. During
the computation, the radio can be turned off and the microcontroller draws only few milliamp of current, with
negligible impact on the energy budget of the sensor node. In particular, on a TelosB node, the current drawn
by the microcontroller is about ten time less then the current drawn by the radio: the energy spent to localize

a 100 node network is about the same energy consumed by the radio in 20 seconds.

3.8 Online vs Batch Training

Algorithm 1 at page32 implements the standard version of the SOM technique. In the approach used, the
map is trained using an online scheme, i.e. the weights are updated at the end of each iteration. Alternatively,
the map can be trained using a batch variant in which all the samples are presented to the network before
updating the weights84]. To implement the batch algorithm is sufficient to compute the widtbf the
smoothing kernel using a monotonically decreasing function; the use of the global learning paraieter

not necessary. Additionally, the batch version has been shown to yield more stable asymptotic weights than
the standard SOMBY, 4].

Despite the potential advantages of the batch training, this method did not improve the error in
the positioning application considered in this chapter. In all the preliminary simulations performed, the
best results were obtained using the online version of the scheme. The better performance of the standard
algorithm is probably explained by the nature of the input set used to train the map. Differently from many
SOM applications, the training samples are generated by sampling an arbitrarily large number of data points.
In this case, since the data set is not fixed, there is not advantage in computing the weight updates after having

presented all the training points to the map.



45

Messages in a 196 node network Messages in a 400 node network

2000 4000
E Flooding (DV-HOP) E Flooding (DV-HOP)
% 1500 % 3000
)] )]
o o
< 1000 {2 2000 Collection Treq . .
5 Collecti S - (SOM)
5 Ction Tree (SOM) )
2 500 ] 2 1000
E E
z z

0 ' ' : 0 ' ' :
10 15 20 25 10 15 20 25
Connectivity Connectivity

Figure 3.14: Number of messages transmitted in a 400 node sensor network to enable localization with
DV-HOP (distributed) and SOM (centralized). Neither flooding nor the collection tree protocol have been
optimized.

3.9 Comparison with Distributed Localization Schemes

Recently, several research efforts have been directed toward the study of distributed localization algorithms.
This interest is motivated by some limitations of the centralized computation model. Centralized localization
is not a viable solution when: 1) The communication overhead to transfer the input data to a central unit is
too high; 2) None of the devices in the system possess the computational resources to compute the whole
solution; 3) The results are critical and introducing a single point of failure will put the reliability or security

of the system in jeopardy; 4) The application require privacy; therefore, similar to GPS, the location should
be estimated by the device itself.

In applications requiring privacy, the use of a centralized scheme like SOM will not satisfy the
requirements. In other application scenarios, a centralized scheme might be preferable to a distributed al-
gorithm. As shown in the previous section, the complexity of SOM is linear in the number of nodes, and
the algorithm can be executed on hardware with limited resources. Given the modest computational require-
ments, not only the SOM scheme can be executed on a single device, but it can also be deployed on a few back
up units to improve the system reliability. Additionally, the majority of the nodes not involved in the com-
putation will only run the application software, thus reducing potential failures due to conflicting software
modules.

Another factor to take into consideration when comparing localization schemes is the number of
messages transmitted within the network. In most sensing applications, the nodes are pre-programmed to
report their readings to a central unit. Low-power tree collection protocols are available as part of the ZigBee

standard 6] and the TinyOS §]; other custom implementations are available from radio chip manufac-
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Figure 3.15: Average number of messages per node transmitted in a sensor network to enable localization
with DV-HOP (distributed) and SOM (centralized).

turers (e.g. 3]). The information about the neighboring set of each node, i.e. the input data required by
SOM, could bepiggybackedn the sensor readings already transmitted without a significant communication
overhead.

Even if the information required by SOM had to be transmitted independently, in some cases the
energy requirements will be lower than those of a distributed scheme. Consider the DV-HOP algorithm used
for comparison in this chapter. The DV-HOP is a good example of a distributed scheme: Each node computes
its own position using information from the network. However, this approach requires each anchor to flood
the network with two waves of messages: the first one to compute the hop count distance, and the second to
transmit the scale factor for each hop. In a network with four anchors, each node will transmit eight messages.
Other popular distributed schemes suchNakop multilateration[151] and Robust positioning148 use a
similar approach (see the work of Langendoen and Reijers for a detailed comparison between the three
approachesq3)).

Figure 3.14 shows the number of transmissions required to implement SOM and DV-HOP in two
randomly deployed networks with four anchor nodes and number of nodes equal to 196 and 400, respectively.
For SOM, each node transmits its neighbor list by sending a packet to a sink node that, in the simulation,
is supposed to be in the center of the network; therefore the same packet have to be re-transmitted several
times until it reaches the sink. Despite no data aggregation techniques are used, the number of messages
is significantly lower than a scheme that uses a flooding mechanism such as DV-HOP. The same results are
shown in Figure3.15by reporting the average number of transmissions per node. For example, on a 400
node network with connectivity equal to 15, each node needs to transmits, on average, about four messages,

exactly half of the messages required by DV-HOP. Therefore, if the node positions will be used at the central
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unit (e.g. to interpret the sensor data), a centralized solution such as SOM might result in a communication
overhead lower than that of a distributed algorithm such as DV-HOP.

If the positions have to be used by the node themselves (e.g. georouting), the energy expenditure to
transmit the results back to the network might render a centralized scheme not attractive. In general, while
the two approaches will have to be evaluated case by case, the author believes that the use of centralized
scheme could be beneficial even in large scale deployments. Other considerations on the two approaches are

discussed in Sectioh.3.

3.10 Related Work

This section focuses on previous localization research using SOM. The relation between the theoretical as-

pects of localization and convergence results available for self-organizing maps are also discussed.

3.10.1 Localization Using SOM

Ertin and Priddy 47] have used SOM to solve the localization problem in WSNs. Their model is based
on the assumption of devices capable of sensing a common phenomena, such as acoustic or seismic, at
synchronized time steps. A further assumption is that the correlation between sensor regaligs from
nodes andj is a function only of the distance between nodB§s;s;] = f(|[p; — p;||), wherep; = (z;,y;)
andp; = (z;,y;) are the physical location of the two sensors. The input samples used to train the SOM are
obtained by concatenating the sensor readings collected at each timg,steq;sg"), cee, 35@1, wheresgn)
is the output of sensarat time stemm. Once the map has been trained with the samgjgseach neuron
contains a weight vectow; = [wj1,...,w;n] whose dimensionality is equal to the number of nodes in
the network. At this point, there is not a direct correspondence between the neurons and the position of the
sensor nodes yet, however, the authors suggest that each seasdrye associated with the neurphaving
the largest componeni;;. The relative position of such neurgnn the lattice of neurons defines the virtual
coordinates of sensar No numerical results are provided to characterize the accuracy of the solution, but
the authors qualitatively describe a possible application to the target tracking problem.

A similar approach has been used by Sakurai etlaf][to implement a tracking application for
people moving inside a building. Similarly to the previous case, the input samples used to train the map
contain the value sensed by thesensors installed in the monitored areg; = [sﬁ"), ce 35\7)} . In this

application the SOM is not used to compute the physical location, but to créagéecal mapwhere sensor
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readings with similar values are grouped together. Again, only a qualitative analysis of the result is presented.
Numerical results are instead provided by Xu et a3, who have used SOMs to track the movement of
people in large outdoor areas using signal strength values measured from nearby cellular stations. In their case
the training samples are given by the RSS value collected by the mobile users as they move among the cells
covered by several base-stations. This approach and the others described above are substantially different
from the scheme presented in this work and have more resemblance witHiogegprintinglocalization
techniques (see, for exampe4] 107).

Takizawa et al. 163 have proposed a distributed range-based scheme that uses some of the concepts
found in the SOM technique. In this approach, the nodes use a modified version of the upda®2yule (
discussed in SectioB.1to iteratively update their position. Interaction between nodes is limited to 1-hop
and 2-hop neighbors. This method is similar to the refinement phase used in several range-based schemes
(see, for examplelp1, 148), and it is susceptible to convergence to local minima. An heuristic solution is
proposed to avoid this situation. Paladina et 483 have also proposed a distributed localization scheme
based on the use of SOM. Their model assumes nodes deployed in a regular grid, therefore each node can
be thought as positioned in the center of a sriatl 3 SOM where the remaining eight neurons contain the
position of the surrounding one-hop neighbors. Each node uses this small SOM to process the the positions
transmitted by its neighbors and compute its own position, which is then propagated to the remaining nodes.

The SOM approach described in this chapter is analogous to previous applications of the SOM
technique to graph drawind.14, 24, a branch of graph theory that deals with the visualization of complex
graphs. The graph layout problem is similar to localization in the sense that it also seeks to find a coordinate
assignment such that vertices connected by edges are positioned close to each other. But, while the evaluation
of a graph layout is mostly based on aesthetic factors (e.g. uniform distribution of nodes and edge lengths,
separation between graph elements, number of edge crossing), the results of the localization assignment are
directly comparable with the true sensor locations. This work explicitly focused on reducing the localization

error of SOM maps.

3.10.2 Theoretical results

The theoretical results discussed in Chagtéelp in understanding the intrinsic difficulty in computing the
node positions and why, in the general case, only approximate solutions are available. The merit of applying
the SOM technique to the localization problem is that it provides a low-complexity solution that has been

shown to produce accurate localization results in different localization scenarios. Regarding the SOM tech-
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nigue itself, despite the attention received, self-organizing maps algorithm have proven to be very resistant to
mathematical characterization and theoretical results are only available for one-dimensional configurations
of neurons. The first formal proof on ordering and convergence properties of SOM has been presented by
Cottrell and Fort 41] for uniform distribution of the input samples and a step-neighborhood function. The
proof has been extended to more general neighborhood function by Fort and#8gmstftheoretical results

for the two-dimensional case are still incomplet&][

3.10.3 Discussion

A lack of formal proof in the general case does not necessarily penalize this approach with respect to other
techniques. Given the possible ambiguity in the localization results and additional uncertainty caused by
the noise in the measurements, even a solution with proven convergence properties would not be guaran-
teed to converge to the ground truth. At present, simulations and test-field experimentations are the only
tool available to compare the performance of different localization schemes working under realistic system

configurations. This is also the approach followed in developing the results in this chapter.



Chapter 4

Understanding the Limits of RF-Based

| ocalization

The SOM localization algorithm discussed in the previous chapter implicitly assumes the existence of a
service capable of determining whether two nodes should be considered neighbors. This chapter specifically
focuses on on the measurements available by exchanging radio messages, and, in general, on the performance
of RF-based localization. Two fundamental problems are addressed. The first one is how to convert the
information collected by the transceiver into connectivity constraints (see Sedtibasd4.2). The second
problem is how to decide when to implement a range-free or a range-based scheme (see &8diuhs
4.4). Since radio messages support both approaches, solving these problems has practical implications for
implementing RF-based localization systems.

The analysis in the following sections adoptgaaameter estimatioapproach based on evaluation
of the Fisher Information and the Cramér—Rao bound (CRB). The presented results serve to understand the

parameters that affect the performance of the two approaches and and suggests strategies to reduce their error.

4.1 Localization Based on Radio Connectivity

As discussed in Chapt@r radio messages support an inexpensive approach to obtain proximity information.
The principle is simple: since each node has a limited communication range, the successful transmission of
a radio packet from node A to node B implies that the two nodes are close in space. The use of connectivity

information is also appealing for the following reasons:
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1. Since nodes already exchange data using radio messages, connectivity information is easy to acquire or
it might be already available; in fact, many contention-free MAC protocols and routing algorithms also

require this information.

2. Connectivity between a pair of nodes is a binary value. This one bit information can be efficiently

communicated across the network with minimal impact on the energy budget of sensor nodes.

3. Several localization schemes are available to process connectivity data on hardware with limited memory

and computational resources (e 80,[59)).

Another merit of connectivity-based localization schemes is that they are easy to simulate. Using
the idealized radio modélwidely adopted in previous research work, connectivity between nodes can be
simulated regardless of the complex phenomena that regulate RF propagation. However, although the ideal-
ized radio model provides an abstraction useful in simulation studies, it does not define a criterion to obtain
connectivity data in real world applications. In other words, system designers implementing a connectivity-
based scheme will have to define their own rule to establish which nodes are to be considered neighbors.
In the Centroid scheme3()], for example, nodes are regarded as neighbors if at least 90% of the message
transmitted are successfully received. Unfortunately, simple, but arbitrary rules like this one will not always

produce satisfactory results.

4.1.1 Motivating Example

Consider the case where one wants to localize the nodes in FglareThe datafor this network has been
collected by measuring the average RSS between pairs of nodes in the cubicles of an officE3hadete

that every node of this network is in the radio range of every other node, and no packet loss was reported.
Application of a connectivity rule based on percentage of received packets produftély @onnected
network.

To get a sense of how range-free localization works in this scenario, nodes 3, 10, 35, 44 are used
as anchors, while the remaining nodes are localized using three different schemes: DD RIItidi-
mensional Scaling (MDS)1p4], and localization using Self-Organizing Maps (SOMY] described in the
previous chapter. The localization results are reported in Figgdbec,d. In all of the three cases the position

estimates are largely incorrect; the average error is between 4.97 m for SOM to 10.4 m for MDS.

1Two nodes are connected if their distance is less than a fixed radius.
Zttp:/Avww.eecs.umich.edu/~hero/localize/
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Figure 4.1: Localization errors for a 44-node network deployed in the cubicles of an office space. a) Original
Network; b,c,d) Localization results using DV-HOP, MDS, and SOM. Segments of lines are used to connect
the true node position to the estimated ones. The long lines in all the three plots denote large errors.

The large localization errors in Figudel are not surprising. Since the network is fully connected,
any connectivity scheme will try to position the nodes close to each other, thus resulting in a large error.
Accurate localization using range-free approaches is not possible in dense networks, because connectivity
data carry little information about the node positions

To overcome the limitation of range-free schemes in densely deployed networks, one can “artifi-
cially” reduce the connectivity by setting a threshold and considering neighbors only those pairs of nodes
whose average RSS exceeds the threshold. It is not clear, however, how such a threshold should be set: a
value that is too low might be ineffective in reducing the connectivity, while a value that is too high might
cause the network to become disconnected and, again, results in large localization error.

What is the correct threshold valueRigure 4.2 provides an empirical answer to this question by

reporting the average localization error for different values of the RSS threshold. The plots show that a proper
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Figure 4.2: Localization error of SOM, MDS, and DV-HOP for the network in Figdrda. The error is
plotted as a function of the threshalt, used to quantize the RSS data.

threshold should be betweer60 dBm and—50 dBm; in fact, in this range all three algorithms produce a low

error. However, the error plots in Figude2 are computed using knowledge of the true node positions.

Computing the localization error is possible only if the true node coordinates are known; therefore, in real-

world applications, an effective threshold value will have to be found using an alternative approach.
RF-based localization is a popular research topic, but the problem of how to convert RSS measure-

ments into connectivity data has not been thoroughly investigated. The solutions proposed are mostly based

on heuristic approaches. For example, the already mentioned centroid sc3@reelgcts the neighbors

based on the packet error rate. Other authors have proposed a scheme where the neighbors are determined

by sorting the RSS value89]. The following two sections use a parameter estimation approach and focus

on the problem of computing an optimal threshold value when connectivity is derived from RSS measure-

ments. The optimal threshold discussed is the value that minimizes the expected estimation error on the node

positions.

4.1.2 Range-Free Localization as a Parameter Estimation Problem

The work described in this section aims at putting the choice of the connectivity model on a more rigorous
footing and define a criterion of general applicability to convert the RSS values into proximity information.
The starting point is the work of Patwari and Hero [113[7], where localization is cast as a parameter esti-
mation problem, and connectivity data is obtained by comparing the average RSS values against a threshold.
After a preliminary introduction on the parameter estimation error, Sedtibdintroduces a a simple exam-

ple designed to explain the approach and obtain useful insights on connectivity based localization.
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Figure 4.3: Schematic representation of the parameter estimation approach.

4.1.3 Preliminaries on the Parameter Estimation Approach

Many problems in science and engineering require estimation of parameters that describe some of the proper-
ties of a system or a process. Figdr8 shows a schematic representation of the case where the parédmeter
has to be estimated using noisy measurem&ntBepending on the initial information available, two differ-
ent approaches can be used to definentbasurement modtiat describes the dependenceXobnd. In the
Bayesiarestimation approacl#,is assumed to be a random value and the measurement model is defined by
a conditional probability functiorf (X |#). A priori information available o is expressed by a probability
function f(0). In theFisherapproach, which will be used in the following sectiofiss a deterministic but
unknown parameter on which the probability functiffX; 6) depends.

Knowledge of the measurement mod¥lX; ) can be used to design an estimator dothat is a
function that usesX to produce an estimate @f The measurement models also serves to determine the

uncertainty of the estimation process throughRtsher informationdefined as follows:

F(0)=E { [aae log f(X; 9)] } . 4.1)

The functionF'(9) is a measure of the amount of information tfatcarries about the unknown parameter

0 [50]. If T is an estimator foé, i.e. § = T'(X), then the variance df is bounded by the inverse &f:

1
Vari{T(X)} > ——. 4.2
(T} = 515 (4.2)
The inequality above, known as Cramér—Rao bound (CRB), sets a lower bound on the vareamgertdfi-

ased estimatérthat uses the measuremexit Notably, the CRB is not related to any particular estimation

3If § is an estimate of the unknown parameebtained using T9 = T'(X), then the estimatdF is unbiased itE{f} = 6.
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Figure 4.4: 1D localization: the distance of node 1 from the origin has to be estimated using connectivity
information obtained by quantization of the RSS data.

technique, but it only depends on the measurement model.

In the following section, the parameter estimation approach and analysis of the Fisher information
will be used to study a simple one dimension localization scenario with a single node in a one-dimensional
space. The propagation model for the RSS signal is described in Séctignwvhile Sectiongl.1.6and4.1.7
describe the quantization of the RSS values and the measurement model that relates connectivity measure-
ment to the node position. Analysis of the Fisher information will then be used to investigate how to reduce

the localization error by a proper choice of the quantization threshold.

4.1.4 Single Node Localization

Suppose two devices placed along a line as in Figude Let the unknown parametel denote the the
position of node 1, which correspond to the the distance between the two nodes. The goal is to dstimate
using connectivity information derived from RSS values. To enable localization, the two nodes exchange
radio messages and collect a set (possibly empty) of RSS vatues{z, 23, 23, . . .}. Let z be the average

of the RSS value collected.

4.1.5 The log-normal shadowing model

This analysis assumes RSS measurements distributed accordinddg-ttemal shadowing moded prop-
agation model that is widely used for link budget analysis in wireless communication. Adoption of this model
is supported both by theoretical analysis of the RF propagation and by measurements in indoor and outdoor
radio channelsl43 61, 23]. Another advantage of using the log-normal shadowing model is that it yields to
analytically tractable results.

In condition of log-normal shadowing, the average RSS valoneasured in dB (or dBm) is modeled

as the outcome of a normal random variaBlavith the following distribution:

Z ~ N(P.(d),o4) (4.3)

P.(d) = Py+10nplogq (i;) . (4.4)
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In the expression above, the tedh(d) denotes the expected value for the received power at a distance
when the received power between two nodes at the distayise?. The parameter, is thepath loss expo-
nent with typical values between 2 and 4 depending on the propagation environment. Finally, the standard
deviationogg models the variability measured between node pairs with the same separation distance, but at
different locations (i.e. in different regions of the deployment area). Obstructions in the path between the
nodes and reflections of the signal due to nearby obstacles can produce significant differences in the average
received power measured by equidistant nodes. Typical valuegd@re between 3 and 12 dBri43.

The average valueis considered instead of the valugs, z», 23, . . .} because a particular reading
can be affected by large variability. Even if the nodes are static, movements of people, vehicles or other
objects in the radio channel can cause RSS fluctuations that are uncorrelated with the node distance. Aver-
aging the measured values reduces part of the signal variability and improves the localization results. On the
downside, using the average RSS values forces the system designer to implement measurement protocols that

exchange multiple messages and have a larger energy expenditure.

4.1.6 Threshold-based connectivity

According to the connectivity model discussed in Sectidnl, two nodes are connected:fis greater than
a fixed threshold®y, and disconnected in the other case. The connectivity between two nodes is defined by a

binary random variabl€’ that takes the following values:

0 if Z < Pp (nodes disconnected),
C= (4.5)

1 if Z> Py (nodes connected)

According to 4.3) and @.5), the probability of the ever@ = 1 (“nodes connected”) is the shadowed

area in Figurel.5a. The analytically expression for this probability is:

szr{Czl}zl—G(Pth_PT(d)>, (4.6)
0dB

whereG is the CDF of a normal random variabdé(0, 1). When the expected received power(d) equals
Py, the nodes are connected with probabijity= 0.5. This condition occurs when the distance between the
nodes equals thiaireshold distancdy,:

Po— P

din = do].O omp (47)
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Figure 4.5: a) Probability density function of and probabilityp of detecting the node as “connected”; b)
Probability of the event “nodes connected” as a functiod{d = 5 m).

Using the equation above, the probability of the event “nodes connected” can be expressed as a

function of the node distance. Combining4), (4.6) and @.7), the probabilityp can be rewritten aslB7:

p=p(d,dn)=1-G {Kc log <dd>} , (4.8)
th
where the constant
= — 4.9
¢ log 10 ogp (4.9)

depends on propagation model’s parameters.
In the rest of this analysis, the problem of selecting the optimal threshold will focus on computing

the valuedy,. Fixed, the propagation model’s parametiy,can be converted into a RSS threshold value:

d
P = Pp(dw) = Py + 10nplogyg (J;) . (4.10)

4.1.7 Fisher Information and Cramér-Rao Bound Analysis

The dy, value that minimizes the estimation error for the nodes’ distance is found by computing the Fisher

information associated with the random variableThe measurement model that described the dependence
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of the connectivity data on the node distance isgtabability mass functiofpmf) of the random variabl€’:

1—p(d,dn) ifc=0,
fle;d,din) = 4 p(d, dy,) ifc=1, (4.11)

0 else.

The pmf above satisfies thegularity conditionsecessary to compute the Fisher information and ensure the
CRB inequality p2]. In particular, the Fisher information is always defined (see below) andupportof
f(e;d,dw), i.e. the set of points wherg is not zero, does not depend dn The support of the function
defined in 4.1J) is the set{0, 1}.

The Fisher information for connectivity measuremetig,) is a function of the parametedsand

di, defined as follows:

2
Feon(d, di) = E { [fd log f(c; d, dmﬂ }

9 2
7f c da d h
> (%d)) flesd ). @12
ce{0,1} y 4y Uth

Since the inverse of the Fisher information defines the CRB, i.e. the lower bound on the estimation
variance, the goal will be to findd, value that maximizes the amount of information available from connec-
tivity measurements. To find the expressionfbés a function of) anddy, (4.11) and @.12) are combined.

The resulting expression is:

1 2
Fould du) = K2 (doan) () @13)

wherel, is a term that depends on the ratio betwéemddy:

Il‘(d7 dth) =

2 exp [~ K2 logld/dw)?) @10

™1 — erf [% log(d/dth)}
Figures4.6a,b show thé.,, computed as a function of the threshold distasdgdor different values

of the ratioogs/np and different node distances. As shown Byl@, the information content of the mea-

surements is inversely proportional to the square of the sgtitn,. Decreasing this ratio results in a sharper

probability transition and larger values of the Fisher information (see Figuteand 4.6a). Intuitively,

larger values of the parametey imply a stronger correlation between the received power and the distance
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Figure 4.6: Fisher Information as a function of the threshold distafigea) for nodes af = 5 m and various
value of the ratiargg/np; b) for nodes at distanaé= {2.5,5.0, 7.5} m andogg/np = 6/3.

between the nodes, which is a condition that causes the estimation error to decrease. In partieylstrine

is a multiplicative factor in the expressiaf ny log,, (do/d) that measures the path loss between two nodes,
where the path loss is the “signal” that carries information about the node distance. On the other hand, larger
values of the parametegg pertain to environments where a strong shadowing noise increases the probability

of measuring large deviations of the signal from the expected values. Since shadowing effects are not related
to the node distance, their contribution should be regarded as a source of “noise” that reduces the accuracy of

the estimation process.

4.1.8 Optimal Threshold for the 1D Case

While the parameters of the shadowing models depend on the radio environment and are out of a system
designer’s control, the amount of information available can be maximized by properly chefgsinthe
plots in Figured4.6a and 4.6b show thatF' always peaks whed, equalsd, and then it rapidly decreases to
zero as the difference betweén andd increasesTo reduce the estimation error, the threshold should be as
close as possible to the true node distance (which is unknown)

Threshold values with a large difference fraiwill reduce the amount of information available and
result in less accurate estimates. For example, if the nodes are five meters apart and the chosen threshold
is too low (e.g. dyn = 2m), the two nodes will be disconnected with probability very close to one. The
measurement carries little information about the true node distance because the nodes will almost always

appear to be disconnected, no matter what the actual valliesofFrom a localization point of view, we can
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z=0 g =7

Figure 4.7: Localization example with a node placed in three possible positions.

only infer that the distance between the nodes is greater2ha@ > 2 m).

A similar situation occurs if the selected threshold is too large compared to the actual node distance
(e.g. dy, = 8 m). The optimal choice idy, = 5m, which corresponds to nodes connected with probability
p = 0.5. Also note that if the internode distance is increased, the optimal threshold is still achieved by
settingdy, = d, but the information obtained from connectivity measurements decreases with the square of
the distance between the two nodes (see Figulig). In other words, distance estimates for nearby nodes

will be more accurate than distance estimates for nodes that are far from each other.

Example: Effect of Threshold Selection

An incorrect threshold selection will reduce the amount of Fisher information, increasing the error of a con-
nectivity based scheme. To understand the effect of different thresholds, consider the following problem:
Assume a node that can occupy three positions A, B, C at a dissaicand7 m, respectively from a refer-
ence node (see Figu#e?). The goal is to compute the true node position using connectivity measurements.
Three quantization thresholds are available: low, medium and high with valye®,,, and Pg. Which
threshold will work better?

Assume B to be the true, but unknown node position. FiguBeshows the distribution of the
RSS values that would be measured for the node at different positiong, gtandp. be the probability

of measuring the node as connected. If the low threshold is usedRj.e= Pp), it will be impossible to

determine the position occupied by the node because all the three cases will produce connected measurements

Py, too high. RSS Probability Density Function Py, too low.
A B
04 x PR 'g\ A
“-g_ ’, \‘ < /I \\
02p RN S R S
’ \
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Figure 4.8: Distribution of the RSS values for a node at positions A, B, C, and three possible thresholds.
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with probability close to onep(, ~ 1,p, ~ 1,p. =~ 1). Similarly, using the high threshold will result in the
same measurement (nodes disconnected) with probabilities close to one for all the three cases. Given the
ambiguity in the measurements, the node could be placed either at A or C without changing the connectivity
measurement. Neithd?;, nor Py allows a range-free scheme to determine the correct position.

The best threshold selection#, = Py, which yields probabilitiep, ~ 1, p, = 0.5, andp, = 0.
Since this threshold maximizes the probability to obtain different measurements for nodes at different posi-

tions, the expected localization error is lower than the error in the previous cases.

4.2 Optimal Threshold Selection in Collaborative Localization: The
Optimal Connectivity (OC) Value

In general, a localization scheme is used to compute the positions of several nodes placed in 2D or 3D spaces.
This scenario requiresllaborative localizatiorsolutions (see Sectidh?2). Even if a node is not in the radio

range of any anchors, the proximity of other nodes (all placed at unknown locations) provide information to
locate the node. This approach is also knowmasti-hop localizationbecause it supports localization of

nodes placed severabpsaway from the anchors.

4.2.1 CRB Analysis

Consider a network with nodes at unknown locations andanchors. Similarly to the previous case, nodes
collect RSS measurements and obtain connectivity valyasy comparing the average received pourey

against a threshol®,. LetC be the set of all the random variables associated with the measurements:

The connectivity measurements are used to compute tieknown node positions. The unknown

coordinates can be arranged in a veéavith the following structure:

0,0, if 2D localization,
0= (4.16)

0,6,,6.] if 3D localization

where the vector@,, 8,, and@, contain the unknown coordinate®; = [z1,...,z,],0, = [y1,...,ys] @and



62

0. = [21,...,2,]. Similar to the 1D case, analysis of the Fisher information and the CRB will be used to
determine a threshold that minimizes the estimation errof for

In the case of collaborative localization, the measurement model jeittigorobability function
f(C;o,dth) = f(Cll,Clg,Clg,... ;e,dth), (417)

which relates the connectivity measurements to the node positions defiredrny the threshold distance

din. Assuming independent RSS measurements, the joint probadility) can be written as:

n+m

f(C;0,dn) = H f(cijs vi, Vi, din), (4.18)
i,j=1
wherev; andv; are the vectors with the coordinates of nodesdy; v, = [z;,v;]* orv; = [z;, y;, z;]* de-
pending on the dimensionality of the deployment space. Each pmifif)(s similar to @.11). In particular,
two nodes andj are connected with the following probability

pij =Pr{C;; =1} =1-G |:Kc log (?)] , (4.19)
th

whered;; = \/(v; — v;)(v; — v;) is the Euclidean distance between the nodes. All the other symbols have
the same meaning as in Sectibi.
In the multi-parameter case, the information is measured byrigteer Information Matrix(FIM)

with the following elements

0 0
F(O) = B { 5 108 1(C: 0. 5108 (C36.dw) | (4.20)

The FIM has(2n x 2n) elements for nodes placed in 2D spaces, @udx 3n) elements when localization

computes 3D coordinates. Given the structure of the parameter vector defidetbinthe FIM is partitioned

in sub-matrice&,;, Foy, - - -, F.. with n x n elements each:
Fa:w Fwy
if 2D localization
F={] 4.21
F, F, F,. (4.21)
F., F,, F,. if 3D localization
Ft F! F,,
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More details on how to compute the FIM for the 2D case are given by Patwari and Het@7)! |
For the following analysis, it suffices to note that each sub matrix has elements simélar3o For example,

the elements of the sub-matidk. are:

—K2 - I(dj, dip)(z; — x;)%/d2, it
[fa:w]” = ¢ ( ! ) J) / J (i # ) 4.22)
K2 -0 I(dige, din) (25 — 22)?/dY, (= §)

The sub-matrice¥y, andFy, have a similar structure, but the terifass — z;)? are replaced by
(yi — yj)2 in Fy,, and by(z; — z;)(y; — y;) in Fx,. Similarly, the terms in the sub-matricks., Fy, and
F., are:(z; — z;)(z; — 2;), (yi — y;)(2i — z;) and(z; — z;)?, respectively.

Anchor information contributes to the diagonal terms of each submatrix. At least three anchors are
needed for localization in 2D, while four non-collinear anchor nodes are necessary for localization in 3D.
Failure to include sufficient anchor information will cause the FIM to be rank deficidii.[ In this case,
analysis of the CRB is possible using the Moore-Penrose pseudoinverse of the3]MThe following
analysis assume that the FIM is always invertible.

The inverse of the FIM bounds the covariance matrix of any unbiased estimatértfat uses

observation from the set of random variahles

Cov{T'(C)} > (4.23)

|

The diagonal elements &' are the lower bound for the variance on the node coordinates and z;:

02 = [F i, 00y = [F ' iynign, ando?; = [F '] oni02n. The variance on the position of each

xt

sensor location is obtained by summation of the variance of the single coordinates:

ol +07, if 2D localization,

ol = (4.24)
o2, + 02, +0?  if 3D localization

If the same topology has to be localized in different environments (different realization of the random vari-

ablesP;;’s), then the termsA(24) are a lower bound for the RMS error on the position of each node. Assum-
(k)

ing that\‘ri(l), -,V are K estimates for the position of nodgthen:

RMS(i) = | = > (1" = vi) (3 — vi) > 0. (4.25)
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Notes on the Measurement Model

The model in this section assumes independent measurements between different pairs of nodes, which is a
simplification of the reality. Shadowing of the RF signal is caused by static obstructions in the path between
two nodes. Therefore, if two pairs of nodes share a large portion of the same physical path, it is reasonable to
expect some correlation between the measurements taken over these two links. Correlation models describing
shadowing across different links have been proposed in the literatureG&.81] 62]), and, more recently,

Patwari and Agrawal have studies the effects of correlated shadowing on the localization H@4hdEle

authors have shown that when shadow fading correlations are taken into account, the standard deviation
bound measured by the CRB decreases of a few percentage points (between 2.4% and 4.5% in the example
analyzed in their work). This evidence suggests that a localization scheme could improve its performance
by taking into account the correlation existing between different measurements. However, since most of the
available localization schemes are not designed to exploit this information, the assumption of independent
measurements is reasonable to model the localization error achievable by range-free localization.

The measurement model in this section also assumesvbainode makes measurements vatrery
othernode in the network. In practice, it may happen that two nodes are too far from each other to exchange
messages and collect RSS information. In absence of external interferences, this situation occurs when the
RF signal reaches the recipient with a power that is below the transceiver’s sengtfivity

The sensitivityP, can be regarded as an implicit threshold set by the hardware. Since the probability
of receiving messages with RSS lower th&nis low, the threshold selection problem is meaningful only
for valuesPy, > P,. When nodes are unable to exchange radio messages, their RSS is lowgy tadh
consequently, lower thaRy,. It follows that even pairs of nodes that are out of their radio range produce valid
connectivity measurements. According to the discussion in this section and the model in 8dcidhese

nodes are always associated with the event “nodes disconnected”.

4.2.2 The Optimal Connectivity (OC) Value

The lower limit on the variance of the node positions can be found by computing the inverse of the FIM. Since
the Fisher information depends on the choice of the threshold distigntiee values4.24) will also depend

ondy,. The optimal threshold is chosen as the value that minimizes the average of the standard deviation of



65

the node positions:

dip = argmin CRBeonn(dn) (4.26)
th
1 n
CR din) = = § 4.27
Bn:onn( th) " 2 o ( )

where the values; depends only, as shown in the previous section. Note that the optimal vadijesan
always be converted into a threshd?{ to be used for quantization of the RSS values.

From a theoretical point of view, thé}, value minimizes the variance of the estimation error. In
practice, while it is not necessary that every range-free scheme will perform close to the CRB, it is reasonable
to expect that the knowledge df;, will be useful in avoiding the large localization errors caused by an
improper threshold selection. To validate this assumption, two localization examples are considered. The
DV-HOP [127], MDS [154], and the SOM schemes are used to localize two networks with nodes deployed
in a 2D and a 3D space (see Figufeda and4.9c). The node positions were generated using the same noisy
grid model described in Sectid3.1

Figures4.% and4.9d show the localization errors averaged over 20 repetitions with different real-
ization of the RSS values. The results support the choice of a quantization level bage@ginThe three
schemes achieve different localization errors, but in all of the cases, the minimum error is reached when the

power thresholdP, is close to theP;, value that minimizes the CRB.

Optimal Connectivity

When aPy, value is used to quantize the RSS values, each node will be connected to a sub-set of its neighbors.
Therefore, the effect of RSS quantization can be summarized by considering the raseftilogk connec-
tivity, i.e. the average number of neighbors per node. In some cases, expressing the results as a function of
the connectivity provides a more homogeneous comparison between different deployments. In fact, different
from dy, and Py, connectivity does not depend on the physical extension of the deployment area and the
magnitude of the RSS values measured by the transceivers.
When the results are expressed as a function of the network connectivity, the optimal thregfolds,

or Py, correspond to a@ptimal Connectivity (OC) value that minimizes the CRB (see Fig@rd0. From
a system’s designer point of view, knowing tB€ value is important for two reasons:

1. At run-time, if the connectivity of the network to localize is too high, the localization error can be

reduced by setting a RSS threshold that ensures an average connectivity éyalXocording to the
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Figure 4.9: CRB and average localization error for localization in 2D and 3D spaces using three range-
free schemesNOTE: the CRB is compared to the average error only to illustrate the relation between its
minimum and the error of the three schemes. Meaningful comparison between the absolute values should use
the RMS localization error.

CRB analysis, this choice minimizes the localization error.

2. At design time, the optimal connectivity can be used to guide the deployment of networks suitable for
localization using range-free schemes. This design approach will be useful when using transceivers that
do not support RSS readings. For example, the Bluetooth standard treats the RSS as an optional value
whose purpose is only to define if the received power is withinGb&den Receive Power Ranf{g.
Therefore, while not every Bluetooth implementation will accurately report RSS measurements suitable
for quantization according tat(5), the localization error can be still controlled by deploying networks
with an average connectivity approximately equabi@. A similar approach can be used when deploy-

ing networks that infer proximity constraints using RFID’s.
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CRBs for a 49 Node Network
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Figure 4.10: CRB for a 49 node network with four anchors on the corner of the deployment area. The
Optimal Connectivity @) value is marked on the plot.

Qualitative Analysis of the CRB for Range-Free localization

The existence of an optimal connectivity value can be explained intuitively by observing the convex shape of
CRBonn Figure4.10shows that the CRBnincreases when the network connectivity approaches values at
the extremes of the range considered, i.e. the network connectivity is either very low or very high. Connec-
tivity measurements are equivalent to knowledge of the neighbor set of each node. In the extreme case of a
network with connectivity equal to zero, all the neighbor sets will be empty. In a fully connected network,
all the neighbor sets will contain every node. In both cases, localization will not produce meaningful results
because when all the nodes have the same neighbor sets, no information is available to discriminate their
positions. Intuitively, between these two extreme values, there must be a connectivity value that minimizes
the error.

The large error for extreme connectivity values can also be explained by analyzifg,{té di)
term derived for 1D localization. Only pairs of nodes with distance comparallg tmntribute significant
Feonvalues. Wherdy, is extremely small or extremely large, as in the cases discussed above, the total amount
of information will be small because no pairs of nodes will have a distance simitiy. to

For intermediate connectivity values, the choicelgfdetermines which measurements are empha-
sized in the estimation process. Figdr&1shows the Fisher information available to estimate the position of
a node in the center of the network. The nodes are plotted against a background that stiQwgdhéy,) at
different distances and for two threshold values correspondidg te 15 m anddy, = 30 m. Comparison of
the plots indicates thahe choice ofiy, determines a tradeoff between obtaining high-quality measurements

from a few nearby nodes, or obtaining less valuable data for a larger number of nodes that are farther away
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Figure 4.11: Effect of choosing two different threshold values. The background color indicates the Fisher
Information Feon(d, din) at different distances from the node in the center. Darker colors correspond to an
higher information content. Increasidg, increases the number of nodes whose distance is simidgy, tiout
sinceFon o 1/d?, these nodes contribute individually less information.

Therefore, the optimal connectivity is achieved by finding dhevalues that ensures the optimal trade-off

between the information contribution of nodes at different distances.

Discussion

The qualitative analysis based on the results derived for the 1D case explains the existenca(®i/thee

and the large errors for extreme connectivity values. While this analysis provides intuitive results, it should
be noted that the CRB depends both on the distance and the geometrical configuration of the network nodes.
A node having mostly collinear neighbors will have a large error even if the measurements have low noise. In
cases similar to this one, performance degradation due to poor node placement is measur€abynttec

Dilution of Precision(GDOP) 48], and analysis of the error requires computing the CRB with all the network
coordinates. However, when nodes have an (approximately) uniform distribution, the properties of the CRB
can be understood using a qualitative analysis based on the results presented irdSketidhis is also the

approach used to study some properties ofQlgvalue in the following section.

4.2.3 Properties of the OC Value.

This section investigates how tl&C values vary as the original network topology is transformed or the
parameters of the propagation model change. The goal is to find an approxd@atalue that can be
computed without using the CRB. Besides the computational burden incurred in computing the inverse of a

potentially large FIM matrix, the CRB analysis requires knowledge of the propagation model's parameters,
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Figure 4.12: a) Optimal connectivitys) computed for different network sizes; b) Approximation of the
term (solid line) using an exponential function (circles).

and, above all, the unknown node positions. As a result, a system designer trying to improve the performance
of a connectivity-based scheme will not be able to compute the CRB to decide the optimal threshold.

In previous work, the CRB has been presented for localization using estimates of the inter-node
distances. In that context, it was shown that the CRB is invariant under global translation, rotation or reflection
of the network 84]. Except for the termg;(-, -), the FIMs for distance and connectivity measurements have
the same structure; therefore the same properties hold for connectivity-based localization. The next section
analyzes the effect of various application parameters o@th&alue. The parameters considered are: 1) the

number of network nodes, 2) the ratiga/n,, 3) the scaling factor for the node coordinates, and 4) the number

of anchor nodes.

Number of Network Nodes

Figure4.12a shows thaOC increases with increasing values of the network size. To understand the effect of
different number of nodes, consider the information available to estimate the position of a generic node. For
simplicity, this analysis will consider a node in the center of the network similar to the case in Bigdre

Assuming independent RSS measurements, the available information is given by summation of the nodes

contribution at different distances:

. K?
Fuo(din) = Y Foh(diy din) = —5 Ii(di, din), (4.28)
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whered; is the distance of thé® neighbors. Again, this simplification does not account for geometrical
configurations of nodes that could result in a large error. However, studyin@li,) does provide intuitive
insights on the parameters that affect @ value.

The optimal thresholdy, is the value that maximizes the available information. Since the analysis in
previous sections has shown that m%%(di, dw) terms are non-negative, and that their value reduces to zero

whend < di, or d > di, the optimal threshold is achieved in correspondence of a zero of the derivative:

OFiot aFc(g%
dy) = 3 L0 g, dn) = 0. 4.29
8d’[h ( th) adth ( [h) 0 ( )

)

Differentiation of the termd,’s in (4.28 yields a complicated expression, but the results can be

simplified by considering an approximated form fp(see Figuret.12b):

2
I(d, dy) ~ %exp (-%) , (4.30)

where K, ~ 0.13 is a constant that was numerically determined using least square fitting. The intuition
for using the above approximation is that theterm closely resembles a Gaussian kernel when its value
are plotted on a logarithmic scale as a function of the radign,. This property can be observed later in
Figure4.23a at page83in this Chapter. When the ternisare used in place df, the terms in4.29 have a
more tractable expression:

OF) 2K2 1 d;

d;, din) = Ii(d;, din) log(=>). 4.31
adth ( th) 013(05"3/71,))2 dthd? f( th) Og(dth) ( )

Note that the sign of each derivative only depends on how each distaoompares against the threshdigt

—1 if dl < dth
. (oFSh . d;
di,dy) | = signlog (=~ | = if d; = 4.32
sign ( o, isdn) | = signlog (2= ) =0 if di = di (4.32)
+1 if d; > din.

This result concords with the intuitive notion of the optimal threshold built so far. If all the neighbors
are at distances less thdp, the derivative offi,; will be negative (see Figuré.13). TheF},; value can
be increased by reducingy, i.e. moving it closer to the neighbors. If all the neighbors are at distances
greater than the threshold, the derivativelaf; will be positive. To obtain more informatiafy, needs to be

increased.
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(a) All the neighbors are at distance less than the thresiigld The derivative is negative, i.e. the total
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(b) All the neighbors are at distance greater than the threshgldThe derivative is positive, i.e. the total
amount of Fisher information will grow if the threshold is increased.

Figure 4.13: Derivative of the Fisher Information in two cases: a) all the neighbors of the reference node are

at distanced; < dy: to increase the Fisher informatidg, needs to be decreased; b) all the neighbors are at
distancesl; > di: to increase the Fisher informatialg, needs to be increased.

Consider now a network in which the threshold selected is optima g, /0di, = 0. If nodes are
added at distance greater th@gp (i.e. without increasing the current connectivity level), the contribution of
the new units will cause the derivative to become positive, thus violating the condition of optimality. To bring
the derivative to zero, some nodes at distance lessdfaalso need to be introduced, causing the optimal

connectivity to increase. In conclusion, as shown in Figuiea, theOC value will increase for increasing

values of the network size.

Propagation Model Parametersogg/n,

Figure4.14shows theDC values computed for 64 node sample topology with diffeeggtr, values. There
is no noticeable correlation between the noise in the RSS measurements and the positigOiiees.
Again, analyzing of the derivative terms computed using the approximate furfc@ndth) provides some
insights on this property.

As discussed in the previous section, in condition of optimal connectivity, the negative contribution
of theaFc%?]/ Odi terms ford; < diy, must be balanced by the positive contribution of the terms ity dy,.

Consider a constant > 1, and nodes placed at distanée = di,/p andds = dnp. By replacing these
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Figure 4.14: a) Optimal Connectivitys) for a 64 node topology with different ratieggs/nyp; b) Value of the
function Fi.¢ (dy) computed for a node in the center of a 64 node topology.

values in 4.3)), it can be seen that the following equation holds:

(p d’[h, dth) . (433)

OFah ( dun _ .4 OFoh
Odn (p7 th) P Odin
For example, ifp = 2 the presence of a node at distange= dy,/2 can be balanced by placirf = 16
nodes at distancé, = 2di. The contributiorﬁFéé%/adth of a node at distancé; = din/3 can be balanced
by placing3* = 81 nodes at distancé, = 3dy and so on. Note tha#(33 holds for any value of the
ratio ogs/np; therefore if nodes were placed according the rule aboveOtlevould be exactly the same
independently fronogg/np.

In typical WSN deployments, it is unlikely that the node distances will follow the distribution de-
scribed. Depending on the value of the rafj@li, alteringogs/np will cause some of the tern&Fc(f;%/adth
to grow more than others, possibly causihg.; /ddi to become different than zero. However, given the
symmetry of the termsl, around the valug = dy, variations ofogg/n, in the typical range measured in
wireless applications seems not to alter significantly the position oOtlevalue. Figured.14b provides
further support to this evidence by reporting thg: (din) values for a node in the center of a 64 node random

deployment. Different values of the ratigs/n, do not significantly alter the position of thg,. maxima.

4Symmetry should be intended in the sense ftftd /p, din) = Ir (din p, din).
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Figure 4.15: Optimal Connectivity: a) for different scaling factors; b) for increasing number of anchors.

Coordinate Scaling

The OC value does not change when the network coordinates are scaled by aSfattis property follows
from the equations that describes the Fisher information for connectivity measurements. Consider the term
Fon discussed in Sectios.1.7, and assume that all the node distances are multiplied by a factédso
assume thatly, is scaled by the same factor, so the network connectivity remains constant. Under these

conditions, theFo, term will be scaled by a factas—2:
Feon(Sd, Sdy) = S™2Feon(d, din). (4.34)

When considering the multi-parameter case, scaling the network coordinates is equivalent to multiply the

FIM matrix by a constant constant factér2. As shown in Figuret.15, the position of the minima of the

CRBconn Will not change.

Number of Anchor Nodes

Results of extensive simulations also show that increasing the number of anchor nodes cause thethe CRB
to decrease, but without significantly affecting th€ position. As discussed in Sectid®?, anchor informa-
tion contributes to the diagonal elements of the FIM. While a larger number of anchors will lower the error,
there is no indication that this modification will alter tfeC values. Figurel.1% shows the CRB,, for a

sample topology with increasing number of anchors.
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Figure 4.16: Simulation results: Optimal Connectivity for: a) 2D networks; b) 3D networks.

4.2.4 Approximation of the Optimal Connectivity Value

Previous sections have identified the network size as the only application parameter that sensibly affects the
OC value. To model the dependence@€ on the number of nodes, the CRE, has been computed for

a large number of simulated topologies with nodes placed in 2D and 3D spaces. Each case included about
500 random networks with a number of nodes between 20 and 400. The deployment areas were fixed: nodes
were placed inside a square regigihm x 50 m for 2D networks, and in cube with side measuriitgn for

3D networks. Four and eight nodes in the corner of the network were used as anchors for localization in 2D
and 3D deployments respectively. For each network the parameters of the propagation model were uniformly
sampled in the following intervalsi, € [2, 4] andogg € [3,9] dBm.

Figures4.16a,b show the simulation results. As expected, @ value increases with increasing
values of the network connectivity, but there is a noticeable difference in how the value grows in the two
cases. An analysis of the derivati®&:.. /ddy, similar to the one in Sectio#.2.3can help in understanding
the differences between 2D and 3D networks. Again, the proposed analysis will consider a single node placed
in the center of the network.

Assume a 2D network deployed in a circular regibr= = R? with n nodes distributed according to
a two-dimensional Poisson point process with denksifgee Figurel.17). Assume also thatis the optimal
connectivity value (i.ec = OC) anddy, is the threshold value that realizes it. According to the hypothesis

on the node distribution, thR anddy, and are related to the network size and connectivity by the following
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Figure 4.17: The network connectivity is increased by adding a node at disténee di/2. To maintain
the optimality of the thresholdy, a number of nodes on the perimeter of the network need to be added.

equations:
R = /-2, (4.35)
AT
(2D networks) g
dy = —. (4.36)
AT

To understand how the optimal connectivity and network size are related, consider increasing the connectivity
by adding one device at distandg/2. According to the analysis in Secti@n2.3 the optimal connectivity
is achieved whedF;.;/ddin = 0; since adding a node at distance lower tfigtwill cause the derivative to
become negative, additional nodes at distance greaterdthaireed to be added to maintain the optimality
of dy,. For simplicity, it can be assumed that the new nodes are added at a digtanBe Adding devices
at distancel < R would affect the network density and it would also complicate the analysis because some
devices would fall inside the circle of radiuk,, thus altering the connectivity. The number of nodes to
be added is found by evaluating the terﬁﬂ;(cf%/adth for nodes at distancé; = din/2 andd, = R. The
contribution on the derivative for a node at distadg¢és

OF) 9K2 1 - di

DF; = — > (dy, dy) = —5 Ir(dy, din) log(dh
1l

. 4.37
Odn dyp d? ) ( )

Note that the expression above has been simplified by choosing a value of theygdtig = 1/1/0.13 =
2.77dBm, so that the denominator inside the exponential inltherm is about one and can be omitted. The
value for a node at distanels = R is equal to:

_OF,

2K2 1 -
DF, = c
> Bdp

do
— — Iy(do, dy) log(—=—). 4.38
o d% r(da2, din) g(dth) ( )

(d23 dth) =
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Figure 4.18: Trend of the theoretical optimal connectivity computed using an iterative approximation.

The numbenr,. of new nodes that need to be added at distahce R must balance the contribution

of the node atl = di/2:

DF; = —n.DFs (4.39)
Substituting 4.37) and @.38) into (4.39 yields:

DF; PLCC (—log®2) log(2)

nC: =

DF, cexp (—log® (1/2)) log (\/Z)

8 log (2) %exp( log ;’zl) log?(2 )

(4.40)

The above expression computes the number of nadésat need to be added to support an optimal
connectivityOC = ¢+ 1. It follows thatc + 1 will be the optimal connectivity for a network with+ 7. + 1
nodes. Usindc + 1) and(n + n. + 1) in place ofc andn and repeating the same arguments, the network
size values can be computed for increasing connectivity levels. This iterative scheme is described by the pair

of equations:

Cit1 = €+ 1 (442)
n exp ( log (
g

The bottom plot in Figurel.18 shows the pairgn;, c¢;) with ¢ = 1,2,3,... computed using, =
9,n9 = 44 as a starting point (this values were determined by computing the CRB). The analysis in the 3D

case in analogous, but the dependencé;p&ndR. on the current connectivity leve} and network size;
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is:
3 n;
R = {/-— 4.44
Y (4.44)
(3D networks) 3 e
dn = {>= 4.45
o e (4.45)
Taking into account the relations above, the number of nodes necessary to maintain an optimal thresh-
old dy, is:
DF, n\ i exp (3 log? ) — log2(2))
= ——1 —12log(2) (- < 4.46
(3D networks)  ne = — g og( )( ) log (2) (4.46)

The pairg(c;, n;) are also plotted in Figuré.18using usingzy = 8, ny = 38 as initial starting point.
The two lines show a close similitude with theC values experimentally computed in Figyrd6 The main
difference between the two cases is that in a 2D network, the minimum distance at which the nodes can be
added is proportional t¢/n, while in the 3D case is proportional {fn, wheren is the number of nodes. It
follows that a lower number of nodes is needed to support an increased connectivity in the 3D case. In other
words, if the same number of nodes is added to the perimeter of a network, the optimal connectivity will grow
faster for the 3D case.

Having explained the differences between the two case$)thealue in Figuret.16can be approx-
imated using simple functions. THeC values grows approximately agn in the 2D case, while there is
almost linear dependence between number of node®éhih the 3D case. The functions used for interpo-

lation were empirically found and their coefficients were determined using least square fitting:

- —3.8290 + 2.3922/n  if 2D localization
OC(N) = (4.47)

3.7055 4+ 0.2684 n if 3D localization

Figure4.19shows theOC values together with the interpolation functions in the two cases.

4.2.5 TestCases

Equation 4.47) implements a simple rule to determine what connectivity should be set when localizing a 2D
or 3D network with a range-free scheme. Consider again the localization example discussed idASkdtion
Equation 4.47) evaluated for a 2D network with 44 nodes indicates an optimal connectivity value equal to
12.04. For the network considered, this connectivity is achieved whgn= —54.22 dBm. In Figure4.20a,

the optimal threshold (the vertical dashed line) is plotted together with the error of the DV-HOP, MDS and
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Figure 4.19: Using interpolation functions to approximate b€ values.

400

SOM algorithms. The plot also reports the CRB computed using the estimated values for the propagation

model's parametersy, = 1.7,048 = 3.91dBm). The connectivity value given by.47 is close to the

minimum of the CRB and close to the absolute minima of the MDS and SOM errors, thus validating the

utility of the approximation found.

The second case study uses the RSS data from a 38 node network deployed in a 3D0shated

data is freely available on the ENALAB web sitéhe optimal connectivity value found using.47) is 13.9,

which for this network is achieved by setting a threshBld= —45 dBm. The error of the three localization

algorithms for this network is reported in Figute2M. Again, the estimated threshold results in an error that

is close to the absolute minimum error for the three localization schemes.
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Figure 4.20: a) Localization error for the 44-node 2D network ikBF; b) localization error for the 38 node
3D network and in109.

Shttp:

/lwww.eng.yale.edu/enalab/XYZ/data_set_1.htm
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4.3 Comparison with the RSS-Ranging Approach

Previous sections have analyzed the proximity-based approach and the problem of selecting an optimal
threshold value when connectivity data are obtained from RSS measurements. Alternatively, range-based
localization can use the raw RSS values to estimate the inter-node distances (see2Sgdliddimilarly to
localization based on radio connectivity, RSS ranging schemes are popular because no additional hardware
is required on the nodes to be localized.

Since both the radio connectivity and the RSS-ranging approach are based on received signal strength
values, a question ariseShould the RSS data be used for range estimates, or should they be converted into
connectivity information? Which approach works bett&&mentioned in the introduction, this problem has
not been investigated in the literature.

In the next sections, the same parameter estimation approach of Sektticarsd 4.2 is used to
compare the localization error of both range-free and range-based localization. The goal is to provide a
practical rule to help system designers to identify the conditions under which an approach works better than
the other. Similarly to the range-free case, the simple localization scenario presented in &dctioiill

serve as a starting point for the analysis.

4.3.1 1D Node Range-Based Localization

Consider again the example in in Figufet, in this case the distance between the two nodes has to be
estimated using the unquantized RSS values. The measurement used in the estimation process is the value
z computed by averaging the RSS values collected between the two nodes. As discussed ir4Seftion
the valuez can be modeled as the outcome of a random varigbleith normal distribution (log-normal
shadowing model). Under this assumption, an estimate of the distance can be computed Udardrthem
Likelihood EstimatoXMLE):

dwL = do10Fo=2)/10mp (4.48)

If the path loss exponem, is known, the MLE provides a simple solution to convert RSS values into
range estimates. Additionally, using.48 the estimation error can also be quantified. If the measurement is

z = P.(d) + §, whered is a sample from the random variallle~ N (0, o4g), then the error is:

e=dw —d=d (10‘% . 1) . (4.49)
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In absence of shadowing effects= 0), the MLE produces the correct estimates (¢.e= 0). When
0 # 0, the error is proportional to the distance between the nodes; therefore, range estimates for nodes with
a large separation distance are less accurate than range estimates for nodes that are close to each other.

Although the MLE for the node distance is readily available, the goal of this section is to compare
the RSS ranging and the radio connectivity approaches on a more general basis. Again, analysis of the
Fisher information will serve to derive results of general applicability and identify under which conditions
the minimum expected error for one approach is lower than the other. As a result, the comparison will make
it possible to select the localization technique capable of the lowest error.

In condition of log-normal shadowing model, theeasurement mod#iat relates the RSS value to

nodes’ distance is a normal distribution with pdf

L) — 1 (z = Pr(d))?
fz(z;d) = P exp <_203|3> , (4.50)

whereP,(d) is the term defined by4(4). The Fisher information is defined as
9 2
Frdd) = B { [&l log f2(z; d)} } : (4.51)
For the two nodes in Figuré.4, substituting 4.50 into (4.5)) yields
Frss(d) = K; — (4.52)

where the constarit; as the same value o4.©). Figure4.21showsF;ssas a function ofi for different values
of np andogs. The plots describe what was already seerdid®): The amount of information available to
estimated decreases for increasing values of the distance and increasing values of thgaratio

Recall that the expression for the Fisher information computed for connectivity measurements is

L

Fcon(d, dth) = Kg Ir(da dth) a2

This equation is similar to4(52), but it contains the extra tertf (-, -) that depends on the ratio between the
actual node distance and the threshold. Since the maximum value for thé termchieved whedy, = d,
Feonlis approximately 37% lower thafiss, even using the optimal threshold. In fat{d, din) = 2/7 = 0.63

for din = d.
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Fisher Information - RSS Ranging
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Figure 4.21: Fisher Information for RSS and connectivity measurements.

4.3.2 To Range Or Not To Range?

Comparison betweeh;ss and Fion, Shows that RSS measurements always carry greater information content
than connectivity ones; however, this is only true as long as the nodes are withaditneangeof each other.

When nodes are within each other’s radio range, they can successfully exchange radio messages and
z can be computed by averaging the valdes, z», z3,...}. The valuez can be used for range estimates
using @.498), or it can be used to derive connectivity information usihg). Depending on the choice &,
two nodes that are within each other’s radio range can be considered connected or disconnected.

On the other hand, when nodes are out of range the collection of RSS measurements is likely to fail.
As discussed in Sectiof2.1at pag.64, when the power of the RF signal falls below the radio sensitivity,
the demodulation of the incoming radio messages is likely to generate errors. Since the MAC layer of most
transceivers is designed to silently drop packets containing errors, no RSS data will be made available to
the application layér In this case, a range-based approach such as the MLE will not produce any position
estimate (i.eFis<= 0). Instead, if a connectivity scheme is used, the occurrence of nodes that are out of range
can be associated to the value “nodes disconnected”; therefore a position estimate is still paggi®.(

The diverse nature of the measurements implies a fundamental difference between the two ap-
proaches. RSS ranging is more accurate when nodes are in the radio range of each other, but a connectivity

scheme is naturally suited to localize nodes that are unable to communicate.

6Some transceivers (e.g. T8][and Jennic 2]) support test modes that allow the transmission of continuous waves. The power of
these signals can be measured on the receiving unit without having to demodulate the signal; therefore RSS measurements are possible
even below the radio sensitivity. A similar approach is used in the interferometric appidathHowever, disabling the MAC layer in
some units is likely to create interferences to nearby devices and can disrupt the functionality of the upper layer protocols (e.g. routing).
Therefore the use of these special measurement modes is less appealing to collaborative schemes where multiple devices share a confined
space.
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RSS Probability Density Function
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Figure 4.22: Top: Distribution of the RSS values for nodes at positions A, B, C, and three possible thresholds.
Bottom: the same distributions computed with a larger ratig/n,. Note the the probability, > 0 that
results from the noise in the measurements.

4.3.3 Effect of Shadowing on Range-Free and Range-Based Localization

High values of the rati@gs/n, degrade the quality of range estimates using RSS and have a similar effect
on connectivity measurements (see Figutegdl and4.6). However, while a strong shadowing variance has
always detrimental effects on RSS range estimates, the occurrence of noisy measurements can sometime
mitigate the effect of a wrong threshold selection. Consider again the localization example described in
Section4.1.8(i.e. the example with the three nodes). Figdrg2compares the RSS distributions used in the
previous example with more noisy distributions. Note that the threshold sele@jpes { P, Py}, while
still non-optimal, are not as ineffective as they were in the previous case. In both cases there is a nonzero
probability to obtain a different measurement for at least one of the nodes at position A or C.

The effect of noise on connectivity-based localization can also be measured by evalygtifar
different values of the ratiogs/np. Figure4.23a showsl,(d, din) plotted as function of the ratid/dy, for
different values of the parameteg andogg. Fixed the valuel/din, I; increases with increasing noise in
the measurements. As a result, threshold selections that are ineffective for smalloglugswill produce
better results wheagg/n, increases.

Figure4.23 further illustrates the effect of noisy measurements on the threshold. The plots show
the Fisher information values computed when nodes are five meters apart. The NaldeFcons and
Frony measure the information when usingig equal to3, 5 and7 m respectively. The optimal threshold is
dw = 5m; in fact, Feons is always greater thafigons and Feons. However, when the ratiogs/n,, is increased

the differences between different choices become negligible.
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Figure 4.23: Effect of increasing the values of the ratigs/n, the I, term (left) and on the Fisher information
values computed for various threshold selection (right).

4.3.4 Network Localization

In collaborative localization, the FIM and the CRB for a RSS ranging scheme are computed using the same
approach described in Sectidr2. This section compares the localization limits for the range-free and the
range-based case as a function of the network connectivity. The notationgs@RBCRB, indicate the
average value of then coordinates’ standard deviation for RSS ranging and localization based on radio
connectivity respectively.

Figure4.24shows the CRBs for the same network used in Figut@ This time the plot also reports
the CRBss Different from the connectivity case, the CRBlecreases monotonically with the connectivity.
For RSS ranging localization, a given connectivity value, say ten, means that each node is in the radio range
of other ten nodes; hence, ten range estimates are available to compute its position. As the connectivity

increases, the number of measurements increases, causing thgtGRBcrease.

4.4 Range-Free and Range-Based Collaborative Localization:

The Critical Connectivity (CC) Value

In addition to the OC value previously discussed, Figu®4 shows another important value: tbgtical
connectivity(CC) value where the two CRB lines crod$%r connectivity values belo®C, CRBnnis lower
than CRRBss, implying that connectivity-based localization is potentially more accurate than RSS ranging,

while the opposite is implied for values abo¥€. Assume a network with average node connecti¥ity
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CRBs for a 49 Node Network
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Figure 4.24: CRBs for a 49 node network with four anchors on the corner of the deployment area. The
Critical Connectivity ®) and Optimal Connectivitys() values are marked on the plot.

Comparingk againstCC determines which localization approach should be used. A range-free scheme
should be used it < CC, and a range-based schemg if CC. According to the CRB analysis, this choice
minimizes the expected localization error.

Similar to theOC analysis, the following sections study how relevant application parameters affect
theCC value. The goal is to identify possible approaches to approximate this value without having to compute

the two CRBs.

4.4.1 Properties of the Critical Connectivity

The CC value is studied for the same parameters previously used: 1) the number of network nodes, 2) the
ratio ogs/np, 3) the scaling factor for the node coordinates, and 4) the number of anchor nodes. Since the
CC is the intersection of the two CRBs, alteration in the relative position of the two limits will cause@he

value to change.

Number of Network Nodes

The CC value increases with the number of nodes in the network. Assume a network with average connec-
tivity k. Assume now that the number of nodes is increased without chakgilighe deployment area is

fixed, this is possible only if the communication range of each node and the RSS threshold are reduced. In
this new network topology, a lower CRBis expected because now the same number of measurements are
available from nodes that are closeFor connectivity-based localization, the CRR decreases even more

noticeably than the CRB. In fact, for a range-free scheme the error reduces not only because nodes are

7 More in general, a proof by Patwaet al. [136] gives sufficient conditions for a decreasing CRB when new nodes are added to the
network.
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Figure 4.25: Critical Connectivity @): a) for different network sizes; b) for increasing values of the ratio
UdB/np.

closer to each other, but also because there are more measurements available from the disconnected nodes.
Figure4.25 shows the two CRBs computed for networks with 49, 81 and 121 nodes deployed in a square

region with side equal t@00 m. While both CRBs decrease, the reduction is more evident for the,GGRB

As a result, theCC value increases with the network size.

Propagation Model Parameters

The CC value also increases when the ratig/n, increases. As discussed in Sectii.7, this term de-

scribes the quality of the RSS the measurements. Increasing noise results in larger localization error; in fact,
both the CRB;s and the CRBy, increases as shown in Figude2%h. But when using connectivity mea-
surements, parts of the losses are compensated by thd{erm, which was shown to increase with larger

noise level (see Sectigh3.3. Since noise has a less severe impact on connectivity-based schen@g, the

increases with the ratioqs/n, (see Figuret.25).

Coordinate Scaling

Similar to the connectivity case, scaling the coordinates by a constant fattas the same effect of mul-
tiplying the FIM by a factorS—2. The expression for the Fisher Information for RSS ranging measurement
is

Fiss(Sd) = S72Fee(d). (4.53)
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Figure 4.26: Critical Connectivity: a) for different values of the scaling factéf: = {1,2,3}; b) for
increasing number of anchor nodes.

Since scaling the network coordinates has the same effect on the FIM elements for RSS and connectivity
measurements, the relative position of the two CRBs will not change. This implies th@tthvalue also

remains constant (see Figute26a).

Number of Anchor Nodes

Results of simulations also shown that € value does not sensibly changes when a larger number of

anchor nodes is used in the localization process. See FHgege.

4.4.2 Critical Connectivity Approximation

Table4.1summarizes the effect of the application parameters studied in previous section€dnane CC
values. TheCC value depends directly on the number of nodes in the network, and thegatig. Again, a

large number of simulated topologies is used to model the dependence(f theue on these parameters.

Table 4.1: Effect of Parameters on CC and OC Values

Parameter Effecton CC Effect onOC
N. of Nodes YES YES
Ratioogs/np YES Negligible
Scaling Factor S NO NO

N. of Anchors Negligible Neligible
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Figure 4.27: Simulation results for critical connectivity values and their approximation (2D networks).

The results are based on about 500 random generated using the same parameters described in Sec-
tion 4.2.4 Figure4.27a shows the simulation results. TK& values are plotted against the simulation
parameters and appear to lie on a smooth surface. The values are interpolated using a function that is empiri-
cally found:

C~C(n, r) = ap+ain+asr+aznr+

+aqlogn + as exp(—r), (4.54)

wheren is the number of nodes andis the value ofrge/np. The values of the coefficient;, obtained by
least squares fitting, areqy = —37.1022,a; = —0.0732,a5 = 8.8506,a3 = 0.0377,a4 = 6.0667,a5 =

41.8567. The mean squared error betwe(é@(n, r) and the data points is equal @ol8, while the average
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Figure 4.28: Approximation of the critical connectivity values and for different intervals of the vatug/s,.
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Figure 4.29: Simulation results for critical connectivity values and their approximation (3D networks).

error is equal td .88.

Figure4.27 shows the interpolating surfacé.%4) together with the data point. Figude28shows
the CC values for different intervals of the ratiys/n,. The dotted lines are computed usirg54) for r
equal to the central value of tlaggs/n, ranges considered. For low valuesogk/ny, the CC value stabilizes
around 15. As the ratioge/ny increases, however, there is an higher correlation between the network size and
CC values; therefore range-based schemes are beneficial only in highly connected networks. These results
confirm the observations of other authors, who have occasionally noted that connectivity-based schemes
outperform range-based ones in conditions of low connecti@®y ¢r when the ranges are estimated using
noisy measurementg(, 129.

Results of simulations with network deployed in 3D spaces are similar to the 2D case. &i2@ire
shows the point and the approximation surface used to interpolate them. The values of the coefficient
obtained by least squares fitting, akg; = —20.5671,a; = —0.1480, ax = 1.0249,a3 = 0.1092,a4 =
8.0842, andas = 2.0966.

4.4.3 TestCase

Consider the 100 node network of Figute30with parameters,, = 3 andogg = 8 dBm. Application of
(4.54 yields : CC(100,8/3) = 20.07 (the exact value found using the two CRBs is 22). According to the
proposed analysis, a connectivity based scheme should be used for connectivity valuez30#Eipand a
range-based scheme when the network’s connectivity is gtiUe.

To validate the choice suggested by the approximét€dvalue, the node positions are computed
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Figure 4.30: 100 node network test case.

using two algorithms. The first one is the SOM-A localization scheme, which has shown to perform well
for low connectivity values. The other one is a range-based scheme that computes the MLE using gradient
descerit[136]. As shown in Figuret.3Q a posteriorianalysis of the error confirms the choice made by using
(4.54. For connectivity values lower than 20, the range-free scheme’s error is lower than the MLE'’s error;

the opposite is true for connectivity above 20.

45 Related Work

Over the past few years, analysis of the CRB have been used by a number of authors to characterize the error
bound of localization algorithms, especially when using range measurements (angle or distances) affected
by Gaussian noise. Moses et dl1[] have derived the CRB for localization based on signals emitted by a

set of sources, and nodes can measure the Time of Arrival (ToA) or the Angle of Arrival (AoA). A study

of the CRB under various conditions of node and beacon density has been proposed by Savvidgk et al. |
Wang et al. have defined a Bayesian Bound (BB) that is the covariance of a posterior distribution computed
from the sensor observationsg8. This bound is equivalent to the CRB for measurements with Gaussian
error, but it is computationally less demanding. Analysis of the CRB has been proposed by Patwari et al. for
collaborative localization using distance estimates obtained by ToA andBB8S4nd for localization using

angle estimateslB5. Localization using connectivity information or quantized RSS levels has been studied
by Patwari and Hero Ill 137]. The idea to obtain connectivity data from RSS value has been also used by Li

et al. to implement &artial Range InformatiorffPRI) scheme that derives “sub-hop” information useful in

improving the localization accurac®9]. This idea is somewhat similar to the one proposed in Seeign

8We use the output of the range-free scheme as initial position for the gradient descent.
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since theOC approach also tries to improve the localization accuracy by choosing a threshold for the RSS

values.



Chapter 5

Localization in Heterogeneous Scenarios

Using SOM

Implementing a localization service for ad hoc networks is a challenging task. Sometimes the nodes are de-
ployed in sparse topologies, while other times they are densely packed inside a building. Some environments
are relatively uncluttered, while others have obstacles that impede the node placement and strongly affect
the radio signal. To address the problem of localization in heterogeneous scenarios, the SOM schemes are
validate using new extensive simulation sets based on log-normal shadowing model.

The simulations in this chapter show that the SOM techniques is be robust to conditions of strong
shadowing of the RF signal and produces accurate results in a variety of simulated environment with nodes
places in 1D, 2D and 3D configurations. However, the SOM'’s error also confirms the theoretical results
discussed in Chaptet. Range-free localization is not effective in densely-deployed networks. To avoid
this limitation, insights gained from the theoretical analysis in Secfi@and 4.4 are used to devise an
improved version of the algorithm (SOM-R) capable of combining connectivity measurements with RSS
values. The new scheme is validated using RSS traces collected from wireless devices in three different
environments. Results show a localization error that is substantially lower than other SOM variants and
practically independent from the connectivity of the network being localized. Similar results are achieved in

networks with anisotropic layouts, which are typically harder to localize.
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5.1 Performance of the SOM based Localization under Log-Normal
Shadowing and Comparison with the CRB

Theideal radio modelsed in ChapteB provides an intuitive abstraction useful in simulation studies, but it
does not adequately capture the random nature of wireless communication. Multi-path fading due to reflec-
tion, diffraction and scattering of the RF signal causes variations in the received power and ultimately affects
the capacity of the recipient to correctly decode a radio message.

This section evaluates the performance of SOM-A, MDS and DV-HOP using a new simulation set
based on the log-normal shadowing model. The data used in the simulation are generated according to a
two-step process: 1) For each pair of nodes, the average RSS values are sampled according to the log-normal
distribution described by4(3) and @.4). 2) Connectivity data are obtained by binary quantization of the
RSS values (see Sectidril.g. To allow a meaningful comparison with the CRB, the simulation is repeated
fifty times, using different realizations of the random variables that model the RSS values. For each trial,
the localization results are evaluated at different connectivity levels obtained by adjusting the quantization
thresholdP;, in (4.5).

The performance metric used to evaluate SOM-A, MDS and DV-HOP is the avB@geMean
Square(RMS) error defined as:

K

RMS Err= ii\l %Z (xi_jgm)u (yi_gl(k))Q’ (5.1)

i=1 k=1

where K is the total number of repetitions (fifty in this case)js the number of nodes (excluded the an-
chors),(z;, y;) are the true node coordinates, a(ﬁxﬁlk), ggk)) are the coordinates computed using one of the
localization algorithm in the&™ trial. The RMS Error is compared against the average value of the node
positions’ standard deviation computed using the CRB.
Additionally, each simulation is repeated in different shadowing conditions, with different values of

the ratioogs/np:

1) Low noise: ods/np = 3/4dBm.

2) Medium noise: ogg/np = 6/3dBm.

3) High noise: ods/np = 9/2dBm.

As discussed in the previous chapter, the ratjg/n, describes the quality of the RSS measurements and
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Figure 5.1: a) 2D sample topology (red squares are anchor nodes); b,c,d) average RMS error achieved by
SOM-A, MDS and DV-HOP for different values of the propagation model’s paramegeagadogg.

ultimately determines the error achievable using an RF-based localization scheme. The sgig¢ctedhl-
ues model different operative conditions, and are consistent with values measured in real deployments (see
Section5.2.3.

Figure5.1 shows one of the sampled topologies used in the simulation and the localization results
together with the lower limit defined by CRB. When the noise due to shadowing effects is low (see Fig-
ure5.1b), the RSS values and the connectivity information are strongly correlated with distance. The results
are qualitatively similar to those discussed for the ideal radio model: For low connectivity values, SOM-A
outperforms the other schemes, achieving an RMS error close to the bound. For larger connectivity values,
MDS produces more accurate results with an error close to the CRB for connectivity comprised between
25 and 45. Again, the error of DV-HOP increases similarly to that of SOM, but its performance is further
removed from the theoretical bound.

When theogs/nyp ratio increases (see Figurgdc,d), the noise due to shadowing effects corrupts the

measurements and causes the localization error to increase (including the CRB). The effects are more severe
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for MDS that performs worse than the other two solutions for high noise values (see FdlaesThe error
generated by SOM, which is inherently a stochastic scheme, and therefore less sensitive to measurements
errors, degrades more gracefully as the noise increases.

For large connectivity values, the error plots are lower than the CRB. Increasing the threshold value
excessively causes the FIM information to become rank deficient, and some of the components of the CRB
go to infinity. In practice, the localization error of the three scheme is always finite, therefore it might be

lower than the CRB when then network connectivity approaches the network size.

5.1.1 Localization in 1D and 3D spaces

In addition to the canonical application of localization in two dimensions, the simulations also evaluate the
three schemes when nodes are placed in 1D and 3D spaces. Ad-hoc networks with linear configurations of
nodes find application in traffic monitoring along highways and perimeter control. 3D deployments are found
in asset tracking applications for large warehouse, or when instrumenting multistory buildings for ubiquitous
computing.

All the three localization algorithms can be easily modified to work in dimensions different from two.
In particular, the only modifications required by SOM are the use of weights with a different dimensionality
and a corresponding change in the sampling space. Points are sampled from a line for localization in 1D, and
from a cube for localization in 3D. In both cases, the training points for the SOM are sampled from uniform
distributions with extension computed usirgjg).

Figure5.2 shows the test topologies used and the results for medium nejgénf, = 6/3dBm).
The results for other noise levels are qualitatively similar to the 2D case. The only exception is the MDS
scheme, which produces a large localization error in all the 1D configurations tested. In contrast, both SOM

and DV-HOP achieve an error close to the bound for low connectivity values.

5.2 Localization in Dense Networks

Both simulation results and CRB analysis show a large localization error when the connectivity reaches values
close to the network size (see Figued and5.2). When most of the nodes are in the radio range of each
other, connectivity data are of scarce utility in determining the node positions. In particular, the extreme case
of a fully connected network is the result of an improper threshold selection, which results in a small amount

of Fisher information and large estimation errors (see Sedtid:2).
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Figure 5.2: a,c) 1D and 3D sample topologies (red squares are anchor nodes); b,d) average RMS error
achieved by SOM-A, MDS, DV-HOP for different connectivity levels and comparison with the CRB value.

When connectivity data is obtained from RSS values, any range-free scheme can be used to localize
dense networks by applying the optimal threshold value discussed in Sécioifihis approach will also
work with the SOM localization algorithm. In the test cases analyzed, it was shown that the error achieved
in correspondence of the optimal threshold is close to the absolute minimum error achieved by SOM (see
Figures4.20a and4.2( at pager8).

The analysis in the previous chapter also shows that range-free algorithms are better suited to localize
sparse networks, while range-based approaches work better in dense deployments. This evidence suggests
that the localization results could be improved by designing hybrid localization schemes capable of exploiting
both connectivity and RSS measurements. In the following section, this idea is explored by proposing a new

SOM variant that exploits the two types of information during the training phase of the map.
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5.2.1 The SOM-R algorithm

The negative effects of large connectivity values on the SOM schemes are easily understood by recalling the
update rule 3.2) discussed in Sectiod.l When the network is highly connected, a large number of neurons
will be within the same distance from tBeu. Therefore, the weight updates will be similar for many nodes,
and the map will not be able to accurately represent the input distribution. This problem is evident in the
motivating example of Sectiof.1.1, where most of the estimated positions collapse toward the center of
sampling space (see Figuteld at pageb?).

The SOM-R algorithm avoids the shortcomings of range-free localization in dense networks by using
the RSS values to redefine the hop count distafige The idea is to augment the proximity information by
sorting the one-hop neighbors on the basis of their received power. In particular, the attenuation of the RF

signal between a pair of nodéand; is measured by thpath lossP,:
PL(iaj):PO_Pija (52)

where Py, and P;; have the same meaning defined 43 and @.4). Similarly to P;;, P, is also a random
variable with normal distribution; the expected valueRoris approximately zero for nodes whose separation
distance isiy, and it increases for nodes that are far apart. It can be assumeld thamall compared to the
separation distances between the network nodes, thetBforg) > 0, Vi, j. If the network is implemented
using transceivers with a typicaensitivityP,*, we expect the path loss to increase up to a maximum value
P_ww = Py — Ps . When such value is reached, the RF power at the receiver will dguahd a further
increment inP_ will cause the communication to fail with a high probability. Based on these considerations,

the new neighborhood function used in the SOM training algorithm is:

d;:s;<c7j)2> | .

®y _ _
hcj = exp ( 552

In the expression abové(;’g;,(c, j) uses the path-loss values to measure the distance betwesntlz¢ index

1The radio sensitivity is the minimum signal power that the transceiver is able to demodulate with high probability. For example,
transceivers compliant with the IEEE 802.15.4 should be able to ensure a Packet Error Rate (PER) less than 1% for signal with power
equal to -86dBm or above.
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c and the a generic node/neurons at inglex

PL(C7j)/PL-MA>( if dhop(caj) =1
dion(c:3) = (5.4)

dhop(c, J) |f dhop(c, j) # 1.

The modified hop-count distance is unchanged for nodes that are not in the radio rangesofuthe
(dnop(c,7) # 1), but it has increased “resolution” for one-hop neighbors. Different nodes within the ra-
dio range of thesmu are treated differently depending on their path loss valu&, (&, j) value close to zero

will result in a small hop-count valuef{(;, ~ 0), which in turn will cause a strong interactioh}’ ~ 1)
between themu and nodegj. On the other hand, wheR (i, j) is close toP_., the two nodes will be treated

as regular one-hop neighbors.

As mentioned in Sectiof.1.1 the shape of the neighborhood function, and consequently the choice
of dnop, is NOt a critical factor in the SOM learning algorithm. In using thevalues as shown above, the intent
is not to accurately model the distance between nodes, but simply to provide a mechanism to differentiate
between neurons that otherwise would be at the same map distance framuh&igure5.3a shows an
example of a neighborhood function basedd},

The use of thelyg, in place of the regular hop distance is the major difference between SOM-R and
the other versions of the scheme. The modified neighborhood funé&igncgn be used both with SOM-V
and SOM-A, but in the rest of this work only the anchored version is evaluated. The SOM-R version is
similar to Algorithm 1 in SectiorB8.2.3with the exception of the new map distance. Also, experimental
results suggest that when the modified map distance is used, it is beneficial to train the map with a larger
learning factor, thereforgmax = 0.5 is used instead thaiax = 0.1.

The SOM-R algorithm shares some similitude with other range-free schemes where RSS values
have been used to complement connectivity information. For example, in the PRI scheme proposed by Li et
al. [99], the received signal strength is used to compute “sub-hops” by sorting the one-hop neighbors, and
Liu et al. [L0Z compute the node positions as intersection of concentric rings derived from the RSS. The
SOM-R scheme also shares some resemblance with the work of Nguyenlit4slwho used RSS value
collected between the nodes to train a kernel-based classifier. However, while the classifier only detects if a
node is contained in a given region or not, the SOM technique implements a more straightforward approach

to localization that produces explicit position estimates as a consequence of the training phase of the map.
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Figure 5.3: Average RMS error achieved by SOM-A, SOM-R, MDS and DVH.

5.2.2 Simulation Results

Similarly to the previous section, the RMS error is computed over 50 localization experiments on a 64-node
network with four anchor nodes. Once again, the simulation accounts for different radio environments by
considering the three noise levels previously used. Also, in this simulation set, theFyaliseused in place
of the sensitivityP, in the termP,_,.x in (5.3). In general, if a threshold is not used and the valu#&pofs
unknown, the maximum path loss value measured within the network can be used in pRagg; of
Figure5.3b,c,d show the simulation results. SOM-R produces remarkable improvements in accuracy,
especially for higher values of network connectivity. In simulations with low and medium noise, and for
connectivity equal to 60, the RMS error is respectively 85% and 65% lower than the value produced by
SOM-A. In networks with high noisesgs/n, = 9/2 dBm), the RMS’s error is about 25% lower than that of
SOM-A. Notably, SOM-R maintains the accuracy of SOM-A for sparse networks, and it produces meaningful
localization results even in fully connected networks, achieving results that are practically independent from

the network connectivity.
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In Figure 5.3 the SOM-R’s error is sometimes lower than the CRB. This is not in contradiction
with the definition of the CRB, because SOM-R uses not only connectivity constraints, but also the RSS
information. However, the use of raw RSS data in the SOM algorithm is different from other approaches that
use signal strength to estimate the inter-node distances. To produce such range estimates, for example using
the MLE (see Sectiod.3.1), knowledge of the propagation model parametgyris required, which in turns
involves collection of a large set of controlled measurements and adds to the costs of the localization service
implemented. The SOM-R scheme can localize nodes deployment in environments for which the parameters

of the propagation model are unknown.

Localization Results in Larger Networks

An additional simulation set considers networks similar to the ones in previous sections, but with a larger
number of nodes. Figure.da,b,c,d show the average RMS error and the CRB computed for networks with
200 nodes deployed in a square region witi) m sides. The ratiegg/np € {3/4,6/3} used in each
simulation set is reported below the error plots.

When the SOM algorithm is executed with 5000 iterations, its localization error still compare favor-
ably to that of MDS and DVH, but the values are not as close to the CRB as in the simulations reported in the
previous section (see Figurgsla,b). The results can be improved by increasing the number of iterations. As
shown in Figure$.4c,d, training the map with 20000 samples improves the localization error and reduces
the differences with the CRB. Similar results are achieved on 400 node networks deployed in a square region
with side measurind000 m (see Figure$.4e,f). In this case, the SOM map is trained with 50000 samples
from an uniform distribution. The execution time necessary to run the MATLAB algorithm on a 2.66 GHz
desktop computer is about 17 seconds.

As previously discussed, the SOM approach allows a system designer to trade accuracy for execution
time. In large deployments, it is reasonable to assume that some of the devices will be powerful enough to
support extensive computation. In this case, the localization results can be improved by increasing the number
of iterations. Figureés.5shows the localization as a function of the number of iterations for three topologies
with 100, 200, and 400 nodes. These plots are similar to the ones in BiguMeut consider larger networks.

In conclusion, different from other neural network techniques, there is no risk of overtraining the map when

using a large number of training samples.

2The basic MLE estimator only requires knowledge of the the paramgtéin addition toPy anddp). To compute an unbiased
version of the same estimator, knowledge of the paranagteis also necessary Bg.
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Figure 5.5: Average localization error computed using SOM for an increasing number of iterations.

5.2.3 Localization Using RSS Data From Real Deployments

This section extends the evaluation of SOM-R and the other SOM variants by presenting localization results

obtained from data measured in some ad-hoc networks.

Test Case 1: 44 Node Network, Medium Noise

The first test case uses the SOM-R scheme to localize the nodes in Bi§ufais is the same network used
in the motivating example in Sectighl.1 The nodes in this network are all in the radio range of each other
and the estimated parameters for propagation modetg@e= 3.91dBm, andn, = 2.3 [13§. The ratio
ogdslnp is equal to 1.7 dBm, close to the value used to simulate networks with medium agige{ = 6/3
dBm).

The SOM-R scheme is executed with 5000 samples from a uniform distribution computed using
(3.9). The localization experiment is repeated fifty times, changing the seed of the random number generator
each time. The average RMS error achieved by the SOM-R is eq@al@dm, with the best and worst lo-
calization attempts that produced an erroitt &75 m and2.518 m respectively. Comparison of the SOM-R’s
error with previously published results shows that SOM-R achieves performance similar to those reported by
Patwari et al. 136] for a centralize MLE estimation scheme (see Fighu®. Note that SOM-R'’s results are

obtained without knowledge of the the parametgyaindogg.

Test Case 2: 46 Node Network - High Noise

The second test case uses data from a 46 node network deployed in an indoor space measuring approximately
14m x 10m. The nodes use a 2.4 GHz transceiver and are arranged in a grid as shown irbHgugome

grid positions are missing due to node malfunctioning at the moment of the test.
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Figure 5.6: The 44-node network with RSS measurements described by Patwari E3@laphd published
localization result for the same network.

The RSS data were collected by exchanging 100 messages between each pair of hodes and com-
puting the average of the collected values. The deployment area, an empty office space with some metallic
fixtures, was relatively uncluttered. Despite the LOS communication between most pair of nodes, the RSS
data manifest a significant level of variability, presumably due to multi-path reflection from the metallic walls
on the perimeter of the area and due to different antenna orientation. In fact, the nodes were equipped with an
integrated antenna and were randomly oriented. Using the measured data, the propagation model parameters
were found to be equal t@yg = 8.13 dBm andn, = 2.74, resulting in a ratio close to the one used to simu-
late noisy networks. In absence of previously published results, the performance of SOM-A and SOM-R are
evaluated by comparing the localization error against that of MDS and DVH. Figdveshows the localiza-
tion results for different connectivity levels that were obtained by varying the threghold he results are

qualitatively similar to those obtained in simulating networks with high raign,,.

Test Case 3: 38 Node Network in a 3D Space - High Noise

The last test case is based on RSS measurements from a 38 node network deployed in an indoor 3D space
(see Figuré.7c). The data is freely available on the ENALAB web 3iéad the measurements are discussed

in detail by Lymberopoulos et al1L(. Similarly to the previous case, the authors found different antenna
orientations and multi-path to be source of significant variability in the RSS data, which exhibit a low corre-
lation with the distance. Figurg7d shows the localization error for the four scheme considered. Again, the

error of SOM-A and SOM-R is significantly lower than the error of DV-HOP and MDS.

Shttp://www.eng.yale.edu/enalab/XYZ/data_set_1.htm
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Figure 5.7: Node deployments and localization results for test cases 2. Red squares represent the anchor
nodes used.

5.3 Localization in Anisotropic Deployments

Anisotropic layouts result from deploying sensors in regions with obstacles (e.g. tall buildings), or when
localized node failures lead to “holes” in otherwise isotropic topologies. It is known that localization in
anisotropic networks is challenging for schemes that use the hop count values as an approximation of the true
node distance (e.g. MDS and DV-HOPS). In fact, while this approach works well when the path connecting
any two nodes lies approximately on a straight line, it generates large errors in presence of obstacles. Any
two nodes can be physically close even if their hop distance is large.

The large error in anisotropic networks has motivated alternative approaches. For example, some
schemes use MDS to compute small local maps that are then stitched together into a gloteB3na4.[

Although this approach yields to an interesting distributed scheme, the process of map stitching increases the
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Figure 5.8: Node deployment and localization results for nodes placed in a 3D network.
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Figure 5.9: Sample anisotropic topologies. Red squares are the anchor nodes.

complexity of the solution and is susceptible to large errors when the connectivity is low. If some components
of the network are not rigidly connected, the sub-maps may get stitched together with the wrong relative
orientation [L15.

A scheme capable of localizing irregular networks without having to partition the map and encumber
the complexity of map stitching would simplify localization in practical applications. The SOM schemes is
potentially well-suited for this task because its learning algorithm is designed to mainly exploit the interaction
of nodes within a short hop distance, while nodes that are several hops away have a weak interaction and do
not directly influence each other.

In this section, the performance of the proposed schemes are evaluated by generating simulation
scenarios with few large obstacles blocking the communication between nodes. Two sample topologies
are shown in Figure5.9a and5.%. The figures refer to these two simulation scenarios as “C” and “W”
deployments. For each topology, 50 networks were generated using the same noisy grid model described
in Section3.3.1 The only difference is that nodes are not allowed in correspondence of the obstacles. The
connectivity information are obtained by first sampling pairs of RSS values using the shadowing model of
Section4.1.5with parameters,, = 4, 0gg = 3dBm, and then selecting a threshold as4rb). Two different
threshold values were used, resulting in half the networks having connectivity around 6.5 and the other half
above 12. For each network, localization was repeated 25 times using different realization of the RSS values;
the results of these repetitions were used to compute the RMS error and compare it with the CRB.

Table5.1shows the simulation results; in addition to the average RMS error, the table also reports the
average localization error relative to the communication rdhg&he maximum range was computed using

the parameter of the shadowing model and the threshold, so it should be intended in the sxpseted
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"C"conn=6.68 | "C"conn=12.49| "W"conn=6.69 | "W"conn =12.92
Scheme| Emr(R) RMS | Err(R) RMS | Emr(R) RMS | Err(R) RMS

MDS 1.44 37.0m 1.12 45.7m 1.15 28.8n 0.69 27.2m
DVH 0.86 20.3m 0.63 22.1m 0.74 18.7m 0.53 21.0m
SOM-A 0.31 7.7m 0.27 9.5m 0.31 7.9m 0.24 9.9m
SOM-R 0.29 7.3n 0.21 7.8m 0.28 7.3m 0.18 7.4m
CRB 6.8m 7.0m 7.8m 6.5m

Table 5.1: Localization results in anisotropic networks.

maximum communication range. The SOM-A’s and SOM-R’s results were computed using the same training
distribution described in Sectidh5.1(i.e. without knowledge of the obstacles’ presence.)

The results shows that SOM-A achieves an average error comparable to that of uniform networks.
On average, the SOM-A’s error is 75% and 60% lower than the error of MDS and DVH respectively. The
errors for MDS and DVH on the “C” topology are comparable with previously published results reported
by Vivekanandan and Wond.§7] and Niculescu and Nathlp5 for the same type of network. SOM-R

generates an additional 15% error reduction with respect to SOM-A.

S

(a) SOM-A: “C”" net (b) SOM-A: “W" net (c) MDS: “C” net (d) MDS: “W" net

Figure 5.10: Sample results for anisotropic layouts: the SOM-A algorithm reduces the average localization
error of 75% with respect to MDS.



Chapter 6

Localization using Directional Antennas

The directional antenna (DA) is an established technology that is effective in improving the performance of
wireless networks. The ability to radiate the RF signal toward the receiver results in a more efficient utilization
of power, in a better link quality, and in an increased transmission range. In addition, since communication
is restricted in space, interferences between devices are reducsgatial reusabilitycan be exploited to
increase network capacity and through@9,[177, 18].

The improved performance of DAs make them suitable for cellular towers and base stations, but
their use in ad-hoc wireless networks is not equally widespread. One complication is the need for specific
protocols capable of supporting directional communication. Many extensions to the popular IEEE 802.11
MAC layer have been proposed in the literatut8,[85, 37, 167, and several other works have addressed the
problem of directional routingl[56, 169, 36, 76]. But despite the research effort produced, the lack of central
coordination typical of ad-hoc networks makes it difficult to fully take advantage of the directive technology,
especially when nodes are mobile].

Similarly, DAs have been considered not suitable for sensor network applications. In WSNs, simpli-
fied! communication protocols can be adoptéd{, 44], but the complexity of the DA technology (mainly
cost and size) seems to contrast with the need to keep the nodes simple, small and inexpensive. Nevertheless,
as radio communication moves to higher frequencies and antenna dimensions shrink, the use of DAs on sen-
sor nodes appears not only feasit9€][ but also desirable to compensate for the higher path loss intrinsic of

shorter wavelengths, to ensure higher link quality, and to implement a form of antenna divEr§jty [

1The design of MAC protocols using directional antennas is in part simplified by the fact that sensor nodes are static and transmissions
are sporadic. In addition, directive routing protocols can exploit the fact that sensor nodes typically transmit all their data to a single
aggregation point (a cluster head or a base station).
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Figure 6.1: One of the switched-beam antennas developed in collaboration with Microelectronics Lab at the
Universita Degli Studi di Firenze, Florence, ltaly.

Another advantage of DAs is that they can be used to estimate the angular position between pairs of
nodes, and this information can be used to implement localization schemes basagl@of Arrival(AOA)

information [L21, 175 111]. This approach improves over RSS ranging schemes for two reasons:

1. AOA estimates can be obtained without assumptions on the propagation model that relates the RSS to
the distance. As shown in the algorithms in Sectioh.3and 6.2, only knowledge of the radiation
pattern is required to estimate the AOA of the incoming messages. On the other hand, RSS raging is
based on the propagation model for the RF signal in a given environment (see 3egtiprExtensive
measurement campaigns are needed in order to identify a suitable propagation model and estimate its

parameters.

2. AOA-based localization requires a lower number of anchor nodes than localization based on distance
estimates. In the 2D case, only two anchors are needed when using angles, while at least three reference

nodes are needed when using distance estimates (see Eigure

The last part of the research work presented in this dissertation has been dedicated to the study of DAs and
evaluation of AOA estimation algorithms. As a result of joint work with the Microelectronics Lab, Universita
Degli Studi di Firenze, ITALY, two different antennas suitable for AOA estimation have been designed,
prototyped and tested. The use of these antennas and their application to localization is described in the
following sections. Additionally, the use of AOA information in the SOM localization scheme is described

in Section6.3
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Target Node

Figure 6.2: Azimuth AOA estimation.

6.1 Azimuthal Angle of Arrival Estimation

Several examples of localization schemes that use angular information have been proposed in the literature.
These solutions use DAs to estimate the AOA of messages transmitted by other nodes located in the same
plane of the antenna. This configuration enables estimation of the azimuthabdsgéeFiguré.2); absolute
localization in 2D can be achieved by combining angle estimates from two reference points.

This section describes a directional antenna suitable for azimuthal AOA. An extension of this princi-
ple is discussed in Sectidh2, which proposes a directional antenna capable of estimating both the azimuth

and elevation angle of the incoming messages.

6.1.1 Four Beam Directional Antenna (FBDA)

The first antenna developed in collaboration with the MicLab at Univ. of Florence is a unit débbeBeam
Directional Antenng FBDA). The FBDA is composed of four coaxially fed planar patch antennas arranged

in a “box like” structure as shown in Figu®1l Each face is realized on a two-layer RF4 substra& [
having planar dimension &6 mm x 56 mm and thickness df.4 mm. The four patches, which operate in
linear polarization, share a common design that has been optimized using the Ansoft-HFSS] @Ak

in the 2.4 GHz ISM band. The mechanical arrangement of the four patches and their coaxial feeding is such
that the vertical axis of the box coincides with the intersection of the E-planes of the single patches (i.e. the
E-field is perpendicular to the ground).

The RF signal is distributed to the four faces by a single-pole four-trough switch, which is controlled
by two digital lines and allows the host node to dynamically select the face to use. The losses due to the
switch, the distribution network and the mismatches are ahéwB within the selected ISM band.

The characterization in the anechoic chamber has given the patterns reported irbE3glmespite

of the low-cost substrate and reduced thickness, the patch gains measured at the external SMA connector,
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Figure 6.3: Radiation patterns of the four antenna faces. The patch used for transmission/reception is selected

using two digital lines.

hence including the losses listed before, are comprised betsvg@eBi and 7.5 dBi. Figure6.3 shows that

the combined patterns ensure an approximately uniform coverage &dahéorizon.

6.1.2 Principle Of Operations

Consider a target node equipped with an omni-directional antenna. The target node transmits radio packets

to a base station equipped with a FBDA (see Figur. The goal is to estimate the angle of arrival of such

messages relative to a reference system aligned with the antenna’s axes. Measuring the RSS on two antenna

faces provides sufficient information for AOA estimatidrl[175 111]. According to the Friis’ free space
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Patch 2

target

Figure 6.4: Distances and angles of a target node relative to patch 1 and 2.

equation, the received powé¥.; andP,, on faces 1 and 2 is:

P.GG(61) [ A\
P = — 21( 1) () (6.1)
r{ 4m
P,GGro (0 A\ 2
po = DGCRBI(AY 62
r5 4

whereP; is the power of the target’s messages transmitted using an omnidirectional (OD) antenna with gain
G;. The values7,1(-) andG,(-) are the angular gains of the patches 1 and 2 and depend on the angles of
arrival 1, 0. Since the relative angle between each patch is figétl ih the proposed antenna), the ratio

between the power received on the two patches is equal to the ratio between the antenna gains #r angles

and(6, — 7/2):
Py Gr(0)

PTQ o Grg(el 771'/2). (63)

The relation above holds when the distance of the target from the directional antenna is much larger
that the distance between the faces of the antenna itseifl, #2 >> d, thenrl = r2 anday & 0, see
Figure6.4. This scenario covers most cases of practical interest. Under the same assumption, the equations

that relate the power received on the other patches can be derived (seetFigib

Py Gr1(01)

= — 6.4
P3 Gr3(by +m)’ ©4)
Prl _ Grl(el) (6 5)

Py Gr4(61 +7T/2)
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Figure 6.5: Distances and angles of a target node relative to patches 1-3, and patches 1-4.

Although measuring the RSS values on patches 3 and 4 is not strictly necessary for AOA estima-
tion, the availability of additional measures improves the robustness of the estimation process. The angular

relations above can be combined in the following system of equations:
DP =DGH)+V, (6.6)

whereDP = [(P;1 — Pr2) (Pr1 — Pr3) (Pr1 — Pr4)]t is a column vector containing the power differences
between the patch n.1 and the other faces (in dBm),[a@ccontains the gain differences for any anglén
dBm):
Gr1(0) — Gr2(0 — 7/2)
DGO)= | Gu(0) - Gus(®+m) |- 6.7)
Gr1(0) — Gra(0+7/2)

Finally, the vectoV’ = [v; v v3]" models the noise in the measurements and the effect of inaccurate knowl-
edge of the radiation patterns.

6.1.3 AOA Estimation

Given (6.7), a solution to estimaté is to use a_east SquargLS) estimator. The LS estimator computes
the angled that minimizes thédeast squared error norrbetween the measured data and the funcia(9)

evaluated using the values from the radiation patterns:

0 = arg min || DP — DGO (6.8)
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Although no attempt was made to characterize the error affecting the measured data, it is known
that when the noise componé¥itin (6.6) is Gaussian with zero mean, the estimatB) coincides with the
maximum likelihood estimatorl6g. Therefore, this solution is equivalent to previous approaches that have

evaluated AOA estimation in condition of normal distribution of the noise (E1f.[

Multiple Signal Classification (MUSIC)

Another technique to obtain AOA estimates is based onMhdiple Signal ClassificatiofMUSIC) [87]

algorithm. The signal impinging on the four antenna faces can be expressed by the following relation:

-l'l(t)_ _G1(9)_ _"1(’5)_
my(t) | | Ca(6) o6+ na(t) 7 (6.9)
3 (t) G3(0) n3(t)
2a®)]  [Ga(0)] ()]

wherez(t) is the signal (in volts) at the output of the antens(@) is the signal transmitted by the target and
n;(t) areAdditive White GaussiafAWG) noise components.

The MUSIC algorithm produces a “spectrun?(9) that exhibits peaks for anglésclose to the
true AOA of the incoming signals. The spectrum is computed as a result of an algorithm that includes the

following steps:

1. Data Collection. A sequence of RSS values on the four antenna faces is collected by exchanging radio

messages.

2. Covariance Estimation. The Spatial Covariance Matrix is estimated using the sequence of available

RSS values.

3. Singular Value Decomposition. The matrix R is decomposed usin§ingular Value Decomposition
(SVD). Assuming a single signal source (the target node), one of the eigenvectors is related to the

target’'s messages, while the other three are related to the noise.

4. Projection. Thesteering vectolG(6) = [G1(0), ..., G4(0)] is projected onto the subspace spanned by

the noise eigenvectors:
G(0)"G(0)

PO= Gomtiice)

(6.10)

where the matriXI* contains the three noise eigenvectors.
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function [Pm] = DOA_music(G,X,M) Music Spectrum: Target at 0°

% AOA estimate using music algorithm.
% G: Steering Vector - [360 x 4] matrix 450
% X: RSS samples - [4 x n] matrix -
% M: number of signal sources (typ. M = 1) 300

%250
L = size(X,1); 200
n = size(X,2); -

50

% replace NaN Va|UeS —?80 -135 -90 -45 0 45 90 135 18!
[i,jl = find(isnan(X)); angle?
X(i,j) = -95;
% Convert RSS and Gains from dB Music Spectrum: Target at 180°

X = 10.7(X/10);
G = 10.(G/10);

6000

5000

% Compute the Spatial Covariance Matrix §4°°°'
Rh = zeros(L); 3000
2000
fori=1:n 1000
Rh = Rh + X(0) o« X7 feo T w0 @5 0 @ w0 im
end angle 0

Rh = Rh ./ n;

% Singular value decomposition Music Spectrum: Target at 90°
[U,D,V] = svd(Rh); ‘

2500
% separate signal component from noise

2000

1500

E(0)

% signal
Us = zeros(4); 1000
Us(;,1:M) = U(:,1:M);
Ds = zeros(4);

500

DS(Z,lZM) = D(Z,lZM); 60 35 w0 45 K % 13 18
angle 0

% noise

Un = zeros(4);

Un(,M+1:4) = U(,M+1:4): I\J/wsm Speptrum: Target at —90

Dn = zeros(4);
Dn(:,M+1:4) = D(;,M+1:4);

% compute the music spectrum S50
Pm = zeros(1,length(G)); 100
H = Un-Un’;
for i = 1: length(G) %
q Pm(i) = (G(i':) *G(i':)’)/(G(i':) *H*G(i':)’); 60 3 90 45 ; 45 90 135 18
en angle 0

Figure 6.6: MATLAB Code for the implementation Figure 6.7: Music spectrum computed from mea-
of the music algorithm sured data for the target@t, 90°, 180° and270°.



114

Figure 6.6 contains the MATLAB code used to implement the MUSIC algorithm. Figureshows
examples of the MUSIC spectrum computed using RSS values measured in a open field with the target
positioned an®, 90°, 180° and270° with respect to the directional antenna. In the four cases analyzed, the
estimated AOA, which coincides with the position of the peak, is close to the true angular position of the

target.

6.1.4 AOA Estimation Results using In-Field Measurement Data

Data collected during in-field experiments were used to evaluate the error of the AOA estimation algorithms
described in the previous sections. Four sets of measurements were collected by placing the target node at
about 3 meters from the base station, with both nodes elevated of 1.2 meter above the ground. The data
was collected in two different scenarios: an open-field (see Fi§u® for the first set of measurements,

and a location in proximity of a building in the second case. During the experiments, the node with the
directional antenna was rotated around its vertical axis on 24 different angular positions, spaded by
each. The RSS values on each patch were collected by transmitting bursts of 50 data packets from the target
node, and each experiment was repeated using two different level of transmission p@keBMm and
—15dBm).

Figure 6.8.b shows the estimation error of the LS and MUSIC algorithms for the two cases: the
columns marked with an “A’ refer to the measurements in the open field, while the columns marked with “B"
refer to the experiments made in proximity of the building. The average error is comprised bét®feand
23°, with noticeably larger values in the second set of experiments. In that case, reflections of the signal from
nearby building are a source of noise that degrades the accuracy of the estimation process.

The radiation patterns used in the two algorithms were measured for an antenna that was differ-
ent from the unit used during the tests. Since the antennas are hand-built and accurate control of the an-
tenna characteristics is not possible, part of the error originates from imperfect knowledge of the radia-
tion patterns of the antenna used. To mitigate these errors, AOA estimation was repeated considering ra-
diation patterns computed using the measurements mad@tdBm. The error achieved in this case is
sensibly lower than the previous case, with values that are comprised befivesrd 13.25° (See Fig-

ure6.8.c).
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(a) A view of the setup used to collect the RSS value to test the Angle of Arrival estimation algorithms.

error in

A (-25dBm) | A (-15dBm) | B (-25dBm) [ B (-15dBm)
LS 10.4(7.9) 13.6(12.21) 15.6(15.2) 23.0(23.8)
MUSIC 9.8(7.6) 10.6(9.8) 17.1a7.5) 15.6(17.0
b) Results from the experiments. The value in the table represent the average
angle estimation. The value in parenthesis are the standard deviation of the error.
A (-25dBm) | A (-15dBm) | B (-25dBm) | B (-15dBm)
LS - 5.15.0) - 13.2515.5)
MUSIC - 6.0(8.7) - 9.1115)

c) Average error (and std. dev. in parenthesis) when a set of measurements is used to
estimate the radiation pattern of the antenna.

Figure 6.8: Result of AOA estimation experiments: the table b and c report the estimation error in two cases

(A and B) and using two transmission levels26 dBm and—15 dBm).



116

Y Facel

6.36

1.55

-4.89

[ap] Ananosaq

-11.30

-17.73

a) b)

Figure 6.9: a) Bottom-up view of the switched-beam directional antenna used to implemesmfhe-anchor
localization system. b) Simulated radiation patterns when faces 1 and 2 are active.

6.2 Indoor localization Using a Single Anchor Node

This section describes a localization system that takes the directional approach one step further by using the
second antenna (see Fig@®) developed in collaboration with the MicLab, Univ. Of Florence, Italy. The
proposed antenna implements single-anchor node localization system. The single anchor node, which serves
as a Base Station (BS), is installed on the ceiling of any large indoor space, in a position unobtrusive to the
users. Due to the 3D arrangement of the antenna elements, the system can locate a target by estimating both
the azimuthg, and elevatiory, AOA of the incoming messages.

The proposed solution targets applications in large rooms or indoor open spaces where installing a
network of anchors is not desirable or feasible. Possible application scenarios include low-cost deployments
and ad-hoc applications (e.g. emergency response). To accommodate for different sets of requirements in
terms of accuracy and cost, three localization solutions are proposed. The system suppoge-faee
(proximity), arange-basedand afingerprinting localization approach. The proposed schemes, which are
evaluated using RSS traces from a real deployment, show that satisfactory localization results are possible

using a single anchor node.

6.2.1 Antenna Design

The antenna mounted on the BS was designed with the goal to implement a compact, low-cost system with
a steerable beam capable of selectively illuminating the space underneath the BS and collecting information

useful for target localization.
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The proposed solution is an incoherent array of six adjacent radiating elements, assembled to form
a semi dodecahedron (see Fig6téa). Each element is implemented in microstrip antenna technology on
a pentagonal plastic substrate and fed by a coaxial probe. The operating frequency is 2.45 GHz with a
bandwidth compatible with IEEE 802.11 and IEEE 802.15.x devices such as WLAN, Bluetooth and ZigBee
transceivers. Given the intended use in indoor applications, the antenna elements are implemented in circu-
lar polarization technology. This design that has proven useful in mitigating multipath effects in reflective
environmentsT5).

A single-pole six-through RF switch is used to multiplex each radiating element. Under control of
the BS, the switch connects one of the six radiators to the transceiver. The inactive faces, which are terminated
on matched loads, behave as dummy loads, without significantly perturbing the radiation pattern of the active
patch. Figures.9% shows two of the six radiation patterns simulated using the Ansoft HFSS sofélvarkg
directivity is typical to that of a microstrip antenna, with the main lobe pointing in the direction perpendicular

to the active face.

6.2.2 Localization Application

This section describes the implementation gfraof-of-conceptapplication where the antenna is used to
estimate the positiofr;, y;) of a mobile target in a large classroom containing rows of desks and chairs. The
antenna was placed approximately in the center of the room, two meters above the desks, and with the face 1
pointing toward the floor. RSS traces were collected 6rxal grid (see Figuré.10 by exchanging bursts of

100 messages between the target and each of the six antenna faces. The measured data was used to evaluate

the performance of three different localization algorithms described in the following sections.

6.2.3 Principle of operations

Let the pair of angle$s,, 0;) define theDirection of Arrival (DOA) of the target's messages. The term DOA

is used in place of AOA to emphasize the difference between estimation of a single angle and(ibge @air
According to the Friis’ equation, the power received by each fadepends on its gaitr;(¢;, 6;) and the

target’s distance. Given the small physical dimensions of the antenna, all the faces are at about the same
distance from the target. Similar to what was discussed in Segtiof the differences in received power (in

dBm) between two faceisand;j will only depend on their gains:

P; — P; = Gi(¢+,0:) — G (¢, 0:), (6.11)
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| Direction of Arrival (DOA)
Base Station (BS) +

Sw. Beam Antenna Target's Position

<,
Grid Points Y [m] 4 X [m]

Figure 6.10: Deployment area an@l x 4 measurement grid. Both the BS and the target use a TI CC2420
transceivers set to transmit at -15 dBm.

Note that with a fixed antenna position and assuming target's movements in the ptafvehere is
a one-to-one correspondence between the D@AY;) and the target’s positiofx;, y;). Letm andm ! be

the bijective functions that describe the mapping:

m:(2,y:) —  (¢r,0t) (6.12)

mt (e, 0:) = (@) (6.13)

The following sections will show how the above relations can be exploited to estimate the target’s position.

6.2.4 Range-Free Localization (Proximity)

The first approach evaluated is a range-free scheme that provides coarse-grained localization. This solution
bears resemblance to a simple proximity-based scheme, but instead of relying on a set of anchor nodes, it
only uses measurements from the switched-beam antenna.

To implement this solution, the radiation patterns aBd ? are used to partition the deployment
area in a set of non-overlapping regiofig ..., S¢. These regions are computed by comparing the gains

G;(m(z,y)) seen in different locations of the deployment area (see top row of Figlife

Si ={(z,y) : Gi(m(z,y)) > G;(m(z,y)),Vi # j}. (6.14)
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[ap] sureb euusuy

normalized RSS measurements on the 6 x 4 grid

SSY pazijjewloN

Figure 6.11: Top antenna gains of faces 1 to 6 at different locations of the deployment &mttom:
measured RSS values from the six antenna faces o6 the grid. To facilitate comparison with the gain

values, the RSS values are centered on their mean and normalized in the range [0, 1].
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Proximity Classification

S1

Figure 6.12: Localization results using Proximity-based classification. Average er2dd4m.

Each areaS; contains the locations that are best illuminated by facén an ideal environment,
facei would receive the strongest signal (compared to the other faces) for any message sent from locations
(z¢,y:) € S;. Assuming a more realistic propagation model, the constraints on the RSS can only be for-
mulated in a statistical sense. For example, when the signal is described by the widely daipptecnal
shadowing modaliscussed in Sectiof1.5 the average RSS (in dBm) follows a normal distribution. In this
case, each ares contains the locations where the statical expectation for the power on ig&Eger than
the expected values on the other faces.

Based on the previous observations, at runtime the localization algorithm assigns the target’s position

to the areas; that corresponds to the face measuring the strongest (average) signal:

(Zt,9t) € Sipmey WIth imax = arg m[?wé]{zi}, (6.15)
=i

wherez; is the mean of the RSS valugs= {zii), zéi), ...} collected by each faceat a given location. Note
that the computational requirements of this approach are minimal because the ®&gowesomputed off-
line and only depend on the antenna position and its radiation patterns. In particular, by varying the antenna’s
height it is possible to adjust the size of the ar8aand control how the deployment area is partitioned.

The measured RSS data (see bottom row of Figutd) were used to evaluate the result of the
assignment@.15. Figure6.12 shows the deployment area partitioned according to the &'gas., Sg
and the classification results on the 6 grid points. Some misclassification occurred, especially between
adjacent areas and in one corner of the room, where the effect of multipath was more severe. To each point

it was assigned an error equal to the distance between its position and the center of #je_aceanputed
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using 6.15. The average error is equal 2034 m. Despite these errors, the simplicity of this approach is
attractive to applications that can tolerate approximate positions. The results could be improved by computing
the regionsSy, . . ., Sg using more sophisticate models, such as the ray tracing approach adopted in a previous

localization system based on a single base stafi@f] |

6.2.5 Range-Based Localization (DOA Estimation)

The second solution implemented uses the measured RSS values to estimate tfis BQAf the incoming
packets. This implementation uses the popular MUSIC approach already described in 8dc8oihe
algorithm is simular to the azimuthal AOA estimation, but the spectrum is now evaluated for pair of angles
(¢,0) (See Figures.13. Let Pys(¢,0) be the spectrum produced by the MUSIC algorithm. The estimated

DOA is defined by the pair of angles that yield the maximum spectrum value:
(é1,6:) = arg max {Pr(9,6)} (6.16)
Then the target position is estimated by applyi6d.8:
(&0,94) = m™ (1, 00).- (6.17)

Compared to the previous case, this method is computationally more expensive, but it allows for
fine-grained localization. Figur@14a shows the localization error using the same set of RSS measurements
previously shown. The average localization error is equal to 1.69 m.

This approach extends previous solutions exploiting beacon with directional antennas located on the
target’s plane130 111]. When DOA estimation is limited to the azimuth anglesingle-anchor localization
is not possible unless combined with distance estimates obtained from RSS measurements. In the proposed
application, since both the azimufl) and elevation angleg, are estimated, target positions in the= 0

plane can be resolved without need of additional information.

6.2.6 Fingerprinting

The last solution tested is a fingerprinting scheme that estimates the target’s position by comparing the RSS
on the six antenna’s faces against a database of previously measured values. This approach offers a low-

computation solution that is oblivious of the RF propagation model and the antenna gains. On the downside,
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Figure 6.13: Values of the MUSIC spectrurf?y; (¢, §) represented in spherical coordinate system centered
on the antenna position. The strongest value defines the estimated direction of the incoming signal.

it requires a site survey to collect RSS signatures at several locations of the deployment area.

In the proposed solution, the database was created using the average RS$zyalueszs] col-
lected on thes x 4 grid (see Figureés.11); a second set of similar measurements was used to evaluate the
localization error. Each location was estimated by first computing the Euclidean distance between the actual
RSS values and the stored measurements, and then appliitdearest Neighbo(KNN) regression algo-
rithm [104]. The better results were achieved by settiig= 1, which yielded an average localization error
equal t02.32 m (see Figuré.14).

The average error achieved using fingerprinting is comparable to the error achieved using DOA, but
it has a larger variability. The large error on some grid points was probably caused by the different type of

antenna mounted on the target device in the second round of measurements.

6.2.7 Discussion

The proximity and range-based approaches discussed in Se6tihdsand6.2.5 which are based on the
DOA of the target's messages, are suited for large rooms or indoor open spaced.inhedé Sight(LOS)
communication with the BS station can be ensured. Outdoor localization can be also supported by placing
the BS at a sufficient height. For example, the antenna could be installed on a tall pole placed approximately
in the center of the deployment area.

When LOS communication is possible, the experimental results discussed in this chapter have

shown that single-anchor 2D localization is feasible using a low-cost, RF-based system that requires zero-



123

DOA - Avg. Loc. Err. =1.69 m FingerPrinting - Avg. Loc. Err. =2.32 m
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Figure 6.14: Localization results using a) DOA Estimation, b) Fingerprinting.

configurations. The reported results were obtained with an initial antenna prototype optimized for size and
using simulated radiation patterns. Most likely, the error could be further reduced by using antenna faces
with larger ground planes and radiation patterns measured in an anechoic chamber.

Although experiments were conducted in only one environment, larger localization errors are to be
expected in cluttered environments and for non LOS communication. For such applications, the fingerprinting
approach discussed in Se&2.6represents a viable solution. The localization results are comparable to
other fingerprinting solutions described in literatut®4], and the use of a single anchor can alleviate the

deployment costs when an infrastructure of anchors is not already available.

6.3 Use of Angle Information in Collaborative Localization Schemes

A target node at an arbitrary position can be geo-located using measurements from a single anchor node
equipped with the antenna described in the previous section. Alternatively, the position of the same target can
be determined by combining two AOA estimates from base stations using DA's similar to the unit described in
Section6.1. Example of localization schemes that use AOA information have been described in Se8tion

and other solutions can be found in the literature. For example, Nasipuri ardi®1]j pnd several other
authors (e.g.38, 130, 122 45]) have proposed schemes where each node estimates its position by listening
to directional beacons transmitted by anchor nodes in the corners of the deployment. Yan§j7& ahvye
evaluated the use of DAs to estimate the position of a mobile node by combining AOA and RSS-ranging
measurements, and Malhotra et dl1]] have extended this approach for use of anchor nodes that are not

aligned with respect to a common reference system.
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As discussed in the introduction regarding GPS, localization schemes that use measurements from
directional beacons represent a special instance of the localization problem. In fact, every node to be localized
need to be in the radio range of the base station(s) with the directional antenna. If some of the nodes are
located outside the coverage area of the BS’s, their position can be computed using collaborative localization
schemes. This approach requires the presence of additional nodes configured to work as a network, but it
will work even if some (or most) of the units are not in the radio range of the reference nodes. Examples
of collaborative schemes using AOA information are solutions based on the MLEZ135, or the solution
based on a planar spanner graph proposed by Bruck &8aRJ]. In the same work, the authors have also
proved that the problem of locating the nodes using local angle information is NP-Hard.

The next section describes the use of AOA information in the SOM localization algorithm. The
solution targets ad-hoc networks where only a limited number of devices are equipped with a switched beam
antenna, and the coverage area of these reference nodes does not necessarily include the whole network.
Preliminary simulations show interesting results. In networks with sufficient connectivity, the use of a single

anchor node with a switched beam antenna can effectively replace four anchors in the corners of the network.

6.3.1 The SOM Localization Scheme Using AOA Information

The SOM technique is based on a learning algorithm that applies similar weight updates to adjacent neurons.
When the weights model the position of a set of wireless nodes, SOM implements a simple and elegant
solution to approximate the node positions using proximity constraints (SOM-V and SOM-A) or RSS values
(SOM-R). This section proposes a modification to the algorithm capable of exploiting AOA information

in the training phase of the map. The basic idea is to modify the SOM learning algorithm so that, at each

iteration, the position of nodes in proximity of a directional antenna is adjusted to match their estimated AOA.

System Model

Assume the typical 2D localization scenario witlmodes placed at unknown location andanchors located

at known positions. Also assunteof the base stations equipped with a switched beam DA similar to the
one described in Sectiof.l. TheseDirectional Base Station¢DBS) are manually aligned according to

a common reference system, or equipped with a magnetometer for automatic alignment with the earth’s
magnetic field. LeDNB; = {ngk), e ,n,(;;)} contain the ID’s of the nodes in the radio range of e

DBS, and letDAOA,, contains the estimated AOA of the messages transmitted by each of such neighbor:

DAOA, = {0{¥ ... 61,

c Uy
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Figure 6.15: At each step of the SOM-p¢ algorithm the position of each neighbor in proximity of a direc-
tional antenna is updated to match their AOA estimate.

Modified SOM Algorithm

The base SOM algorithm is modified to include directional information in the training phase of the map.
Before executing each iteration, the position of each nd@éin the radio range of thet* DBS is adjusted

to match the estimated AOAfk) (see Figureb.15. Note that the adjustment only changes the bearing of

each neighbor without altering their distance from the DBS. This modification is compatible both with the

use of connectivity information (SOM-V and SOM-A) and RSS values (SOM-R). In the rest of this section,

the notation SOM-X;. will be used to denote a SOM variant used and the number of DBS’s. For example,
SOM-Ay4 will indicate the variant that uses connectivity information and four DBS’s, while SQMwRII

denote a version that use RSS values and a single DBS. The pseudocode describing the changes necessary
to include AOA information in the SOM learning algorithm is shown in AlgoritBmExtension to the 3D

case is straightforward using a switched beam antenna as the one in $e2ttapable of estimating both

the azimuth and elevation AOA of the messages.

6.3.2 Collaborative Single-Anchor Localization

This section evaluates the effectiveness of the proposed solution in a special case where the network contains
only one BSD placed in the center of the network at a known location. As discussed in Se2tisimgle-
anchor localization can be useful in supporting emergency response applications or any other deployments
where it is not possible to install and maintain a network of reference nodes.

Anchor-free localization is evaluated first by comparing the performance of SOM-A and SQM-A
Note that the SOM-4y learning algorithm requires knowledge of the physical dimension of the deployment

area. Since only one anchor is used, this information cannot be inferred from the position of anchor nodes
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Algorithm 2: 2D SOM+ Localization

Input: Matrix Dy: hop count distances among nodes
Input: Dimensions of the deployment area
Output: [z;,y;] for j =1,..., N: node positions

% Parameter Initialization

1: Mmax = 0.1; Tmin = 0.01;
2: omax = max{Dp}/2;  omin=0.001
i,

3: for all nodesn do
4 [zy,yn]T =random|()
5: end for

% Main Loop
6: forn=1:toN_ITERdO
7. 1= Nmax — (NMmax — Mmin)/(N_ITER — 1)
8 0= 0max— N(Omax— Tmin)/(N_ITER — 1)
% Use AOA Information to reposition DBS’s neighbors
9: forall directional base statiorisdo

10: for all neighbors of £ do

11 dist = ||[zi, yi] — [Tk, yi] |

12: [, yi] = [zK + dist cos 9§k), Yr + distsin 01(’“)}
13: end for

14:  end for

15.  (z,y) =random() % inside the deployment area
16:  c=argmin(z,y) — (z;,4)|

17:  for all network nodeg do

18 hej = exp (—Dy(c, §)?/20?)

19: [z, y3] +=nhe;([z,y] — [25,y5])
20: end for

21: end for

The gray markers show the code that has been added or modified with respect to the original version.

located in the corners of the network, as in the case of the standard SOM-A; therefore the size of the deploy-
ment area must be esplicitely supplied at runtime.Also, the adjustment sh@woinot need to be repeated
at every training cycle. The results described in the following sections were achieved by adjusting the AOA

once every 25 iterations of the standard learning algorithm.

Range-Free Collaborative Localization

The first simulation set compares the performance of SOM-A and S@MrAocalizing 64 node networks

similar to the ones in Figur@.16 The connectivity information was generated by binary quantization of RSS
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Figure 6.16: The two localization scenario considered: a) a network with four anchors in the corners is
localized using SOM-A; b) The same network is localized using SO-the four anchors are replaced by
a single base station capable of estimating the AOA of the messages transmitted by its neighbors.

data sampled from a log-normal distribution computed using paramefgrs ( m, Py = —45dBm,np =
3,048 = 6dBm). Four anchor nodes where used for SOM-A, while only one anchor node placed approxi-
mately in the center of the network was used to train SOM-A

For each network localized, the SOMy£s results are evaluated using a two-step performance met-
ric. First, the alignment of the computed map is checked to determine if it matches the ground truth. Second,
the evaluation procedure computes the average localization error of the correctly aligned maps.Eyure
shows the results achieved in localizing sets of 100 random topologies generated with increasing connectivity

levels. For sparse networks, the number of nodes in the radio range of the DBS is low. Therefore, the angle

Perc. of nets with wrong orientation Avg Localization Error
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Figure 6.17: Localization results using SOM-A(four anchors), SOM-4& (one directional anchor) and
SOM-Ay4 (four directional anchors).
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adjustments made using the available information are not sufficient to ensure convergence to properly aligned
maps. To sensibly reduce the number of incorrect topologies, the network connectivity needs to increase to
values above 20. In these dense configurations, the S@Mrgorithm not only produces an high percentage
of aligned maps, but also achieves a lower error than SOM-A (see Fdlifig).

To provide a comparison baseline, the plots in Fig@d3b also show the error achieved when the
four anchor nodes in the corners are all equipped with directional antennas (S9MFAe SOM-Ay,’s er-
ror is significantly lower than the error of the other two variants and decreases steadily with the connectivity.
The SOM-Ay, algorithm does not specifically take into consideration nodes that are neighbors of multiple
DBSs, but when this happens, combining two AOA values is sufficient to estimate the position of the node in-
dependently from the rest of the network. When the connectivity increases, the availability of AOA estimates
for a large number of nodes compensates for the loss of accuracy that affects range-free localization. As dis-
cussed earlier, several applications using directional beacons have been discussed in the literature; therefore

the remaining sections will specifically focus on single-anchor applications of the directional SOM.

6.3.3 RSS-Based Collaborative Localization

As shown in the previous section, the SOM:A performance is heavily affected by the network connec-
tivity. A large number of neighbors in proximity of the DBS is required to ensure convergence to correctly
aligned maps. Unfortunately, the need for high connectivity penalizes the accuracy of the SOM technique.
As discussed in details in Chaptgrthe information available to a range-free scheme decreases in dense de-
ployments. In facts, Figuré.17shows a SOM-A and SOM-A’s error steadily increasing for connectivity
above ten.

The limitations of range-free localization can be avoided by including RSS values in the training
phase of the map (SOM-R). The simulations of the previous section have been repeated using the SOM-R
scheme and its angle based variant. The number of incorrect topologies is generally lower than in the previous
case, and it reduces to only a few percent for connectivity above 15 (see Big@8ag The error plot shows
a SOM-Ry;’s error approximately 20% lower than the SOM-R’s error for the larger connectivity value tested

(see Figures.18).

Effect of Noisy Measurements

All the simulations presented so far were executed assuming error-free AOA estimates. To test the effect

of noisy measurements, the simulations have been repeated by adding a component etooeach an-
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Figure 6.18: Localization results using SOM-R (four anchors) and SOM-Ringle anchor).

gle estimate. The error added was sampled uniformly in the intérvgls] for four differents values:
s ={0°,5°,10°,15°}. These error values are compatible with the error measured during the experiment
described in Sectiof.1.4

The results in Figuré.1% do not show a significant correlation between the magnitude of the error
and the number of incorrect topologies. The effect of noisy measurements is more appreciable on the error
plots in Figure6.1%, which show graceful degradation of the SOM;R performance for increasing error
values. For angular error sampled in the intefval5°, 15°], the SOM-R; s error using a single directional

anchor is close to the error of the SOM-R scheme that uses four anchors.
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Figure 6.19: Performance of SOM-R evaluated with different error affecting the AOA estimates. The black
dotted line in plot (b) is the SOM-R'’s error with four anchors.



Chapter 7

Conclusions

Localization in ad-hoc networks requires computing node positions with only a limited amount of initial in-
formation. ChapteB has presented a solution that uses the Self-Organizing Map formalism to localize the
nodes using radio connectivity data and (possibly) no anchor nodes. The presented solutions were able to
produce accurate results in a variety of simulated scenarios. In addition, validation using RSS traces from real
deployments has shown accurate localization results, especially when using the SOM-R scheme capable of
combining connectivity and RSS information (see Chap}ehis solution ensures accurate localization in
sparse deployments as well as in fully connected networks; it is robust to noisy radio measurements and con-
ditions of anisotropic layout. Finally, the SOM localization approach, although centralized, was shown to be
characterized by a lightweight implementation that makes it suitable for devices with limited computational
resources.

This dissertation has also addressed localization from a theoretical point of view. Sdcliamsl
4.2 have focused on the problem of determining an optimal quantization threshold to convert the RSS values
into connectivity data. As a result of an information-theoretical analysis, the optimal threshold has been
shown to be related to a network connectivity value dubtyetimal connectivity (OC) (see Sectior.2).
Notably, theOC value can be approximated using a function that only depends on the number of network
nodes. Inferring connectivity on the basis of th€ value ensures a condition of maximum information
content in the measurements, thus potentially reducing the error of any scheme that operates using radio

proximity data.
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After having defined how to convert RSS into connectivity data, Secdd®and4.4 have investi-
gated the difference between the range-free and the range-based localization approaches. The goal was to
understand in which conditions a connectivity based scheme can potentially outperform a range-based one
and vice versa. Using an approach similar to the one in Seclidnand 4.2, the choice between the two
approaches has been shown to depend oanrttieal connectivity (CC) value described in Sectiah4. This
value can be approximated using a function that depends on the network size and thgsfaio Similar
to theOC value, knowledge o€ C can reduce localization error by guiding the choice between a range-free
and a range-based solution.

The theoretical results discussed in Chagtare based on analysis of the CRB for the localization
error. Not every range-free scheme will achieve its lowest error for network connectivity equal, tand
RSS ranging schemes might perform worse than range-free schemes for connectivitg@bddewever,
if the schemes considered are known to perform close to the CRBs, analysis@fthrd CC values will
provide valuable information to reduce the localization error.

Finally, the last part of this dissertation has described the use of directional antennas for AOA esti-
mation. Sectior.2has demonstrated the use cfemi-dodecahedrcemtenna for single-anchor localization.
This novel approach takes full advantage of the qualities of AOA-based localization, and it is capable of
computing the location of a 2D target without requiring knowledge of the propagation model for the RF
signal. The concept of single-anchor localization has been further explored by integrating angle information
in the SOM localization approach. The proposed solutions (SQM-Xnplement collaborative localization
schemes that exploit AOA data from a single BS to produce absolute maps. Results of preliminary sim-
ulations show that in conditions of sufficient connectivity, the single-anchor version can improve over the

performance of the scheme using four anchor nodes.

7.1 Future Work

Localization Using Self-Organizing Maps

Localization based on the SOM technique has been explored in detail and evaluated using extensive sim-
ulation. Where possible, data from actual sensor networks has also been used to characterize the SOM’s
error. The deployment of a large test bed capable of collecting real-time data would help in obtaining a bet-
ter validation of the SOM'’s performance under realistic conditions and using different types of information

(connectivity, RSS and AOA data). Another direction for future work is the design of a distributed version



132

of the algorithm. Although the experimental results in Sec8ahhave shown compatibility with resource-
constrained devices, a distributed implementation would make SOM localization attractive to a wider range

of applications.

Theoretical Analysis of RF-Based Localization Systems

The theoretical analysis in Chapteis valid for schemes that use only range estimates or connectivity infor-
mation. Additional information can be used with both of the approaches. For example, range-based schemes
can impose constraints on the minimum separation distance between disconnected nodefXeml-

larly, connectivity-based schemes can use RSS information to “sort” one-hop neigb®oiHis is also the
approach used to improve the performance of the SOM-R algorithm in Sécfomn both the range-free

and range-based cases, using additional information will cause the localization error to decrease)and the
andCC will not necessarily provide useful information. Analysis of schemes using hybrid measurements is
left for future research work.

Chapterd has also shown that the optimal connectivity for range-free localization can be computed
using a function of the network size. This result bears similitude to the popular work of Xue and Kumar
who have investigated the number of neighbors needed to ensure connectivity in a multi-hop wireless net-
work [174]. Their results show that asymptotic connectivity is ensured when the number of neighbors per
each node i®(log n), wheren is the network size. A study investigating further analogies between range-
free localization and asymptotic connectivity is also left for future work

Another research effort can be directed toward extending the CRB analysis to more realistic radio
models. The analysis in Chapt#assumes a log-normal shadowing model with Gaussian distribution for the
average RSS. Although the use of this model is supported by both theoretical and experimental evidences, its
application does not take into account the non-ideality of the transceivers used in current wireless networks.
Messages transmitted using low-power devices are subject to error when the received power falls below the
radio’s sensitivity. When errors occur, the messages are dropped by the hardware and carry no RSS data useful
for localization. As a result, statistics based on the successfully received radio messages will be invariably
biased, especially when the RSS is close to the lower limit imposed by the hardware sensitivity. Even if the
underlying model was indeed log-normal, the data collected by a realistic device will not follow the same
distribution. Addressing these phenomena requires to consider the rapid fluctuations in the received power
(small-scale fading model4§43), compute the bit error rate, evaluate the probability that a packet is dropped,

and adjust the measurement model to take into account the effect of missing data packets. Investigating the
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Figure 7.1: a) Probability of “connected nodes” for pairs of nodes placed at distaricm and 6 m;
the same probability are also evaluated when the node positions are shifted by aNaetod.5 m. b)
Approximation of the Fisher informatiofyon(d = 5m,dpn) computed by evaluating the cross entropy
D(f || fa) between the probability mass functions computed with- 5m andd = 5 + Am, where
A={-2,-1,-0.54+0.5,1,2} m.

fundamental limits under realistic operative conditions would give a significant contribution to the successful
application of RF-based localization technology.
Finally, future research work could use the relation between the Fisher informatic@rassl En-

tropy (CE) and investigate applications to localization. The cross-entropy for two discrete random variables

is described by the following equation:

‘T
)1
Dpllg) =Y pl)log 2 @)

reX

The cross entropy, also known Ksllback-Leibler distancgs positive value that is often used as a distance
measure between two distribution; in fab{p || ¢) = 0 if and only if p = ¢. The cross-entropy is also
related to the Fisher information. ff(X; #) is the measurement model used in the estimation process, and
fa(c; 0 + A) is the same probability function evaluated for a different value of the pararfieteen the

Fisher information can be expressed as a function of the cross-en&@py [

F®) = Jin (52007 112)). (1)

Figure7.1a, shows the probability of measuring two nodes as connected for different threshold val-
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ues. The probabilities are computed for two nodes at distahegsal to2.5 m and6.0 m. The same plot also
reports the probabilities when the node position is altered by adding an Affset0.5 m. The differences
between the two probabilities are maximized for threshold values that correspond to the true node distances,
a fact that concord with the results derived in SectorFigure7.1b show the correspondence between the
cross-entropy computed for different valuesfofand the Fisher information for connectivity measurements
when nodes are placeédm apart. As the offset value is reduced, e.— 0, the value(2/A2)D(f || fa)
becomes a close approximation of the Fisher information.

Equation 7.1) suggests that a node might be able to compute the amount of Fisher information by
evaluating how the connectivity changes as the position of the nearby nodes are perturbed. Although nodes
cannot be physically moved, changes in the connectivity could be evaluated by perturbing the quantization
thresholdP,. Application of this approach could result in a distributed scheme that allows each node to

determine a locally optimal threshold to estimate its own position using connectivity measurements.
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