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Implementing a localization service for a wireless sensor network is a challenging task. Sometimes

the nodes are deployed in sparse topologies, while other times they are densely packed inside a
building. Some environments are relatively uncluttered, while others have obstacles that impede

the node placement and strongly affect the radio signal. To address the problem of localization in
heterogeneous scenarios, we present a range-free scheme based on the neural network paradigm of

Self-Organizing Maps (SOM). This method is lightweight, works with or without anchor nodes,

and has proven effective in a variety of simulated scenarios. We propose three variants (SOM-V,
SOM-A and SOM-R) that achieve accurate results in sparse topologies but are also suitable to

localize nodes in dense networks or deployments with anisotropic layout. We evaluate the localiza-
tion results using extensive simulations, comparisonswith other range-free techniques, Cramér-Rao

bound analysis and test cases with data from in-field measurements. Finally, we demonstrate an-
alytically that the proposed scheme has low computation and communication overheads, making

it suitable for resource-constrained networks.

Categories and Subject Descriptors: C.2 [Computer Communication Networks]: Network
Protocols

General Terms: Algorithms, Performance, Design

Additional KeyWords andPhrases: Self-OrganizingMaps, Localization,Wireless SensorNetworks

1. INTRODUCTION

Network localization is a challenging research area that has been actively investi-
gated over the last few years. Since not every node can be augmented with a GPS
receiver, the node positions have to be computed using information collected within
the network. The information available for node localization usually consists of a
set of constraints, such as distance measurements or connectivity between nodes,
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Scheme Error Simulation Scenario Reference

nodes anchors connectivity

Convex opt. 0.5R 200 50 5.7 [Doherty et al. 2001]
DV-HOP 0.25R 100 30 7.6 [Niculescu and Nath 2003]

Amorphous 0.3R 200 6 20 [Nagpal et al. 2003]
APIT 0.5R n/a 18 8 [He et al. 2003]

MDS 0.3R 200 4 16 [Shang et al. 2003]

Table I: Typical performance of some range-free localization schemes.

and optionally, the absolute position of some nodes (anchor nodes). Localization is
a difficult problem, both in theory and in practice. 1) From a theoretical perspec-
tive, localization is analogous to the problem of embedding a graph in a Euclidean
space. If we exclude selected cases1, this problem is NP-hard even assuming error-
free range measurements or ideal connectivity [Saxe 1979; Breu and Kirkpatrick
1998]. 2) In addition to the computational complexity of finding a solution, the
result may be ambiguous, i.e. multiple solutions are admissible, when not enough
constraints are available [Eren et al. 2004]. This situation likely arises in Wireless
Sensor Networks (WSNs) because nodes have limited communication/sensing range
and can only interact with a few neighbors. 3) In practice, since nodes use inexpen-
sive sensors and are deployed in uncontrolled environments, the measurements are
not only difficult to obtain, but also corrupted by substantial noise that increases
the uncertainty in the results [Niculescu and Nath 2004; Whitehouse et al. 2005].
The difficulties above explain the large number of localization schemes proposed

over the past few years. Existing solutions, based either on formal approaches or
heuristics, can be classified broadly in two families: range-based schemes that use
distance or angle estimates, and range-free schemes that use proximity information
such as radio connectivity. In dense networks, range-based localization produces
accurate results when the measurements have a high signal to noise ratio (SNR).
However, range estimation generally relies on additional hardware, which adds to
the cost and size of the nodes, and it is less suitable for ad-hoc deployments. For
example, the ultrasound transceivers commonly used to measure distances have a
range of only few meters unless properly aligned, and the antenna or microphone
arrays used for Angle of Arrival (AoA) estimates need to be aligned perpendicularly
to the plane of the incoming signal. On the other hand, range-free schemes offer
more coarse-grained resolution but are cheaper, easier to deploy, and potentially
better suited for use in noisy environments [Niculescu and Nath 2004; Beutel 2005].

1.1 Range-Free Localization

Schemes such as Centroids [Bulusu et al. 2000], convex position estimation [Doherty
et al. 2001], DV-HOP [Niculescu and Nath 2003] and MDS [Shang et al. 2003] are
popular localization techniques that use only the connectivity data derived from
radio communication. As shown in Table I, these schemes achieve a localization

1The localization problem can be efficiently solved in networks where a high number of error-
free inter-node distances and angles are known. See the work using semidefinite programming by

Biswas and Ye [2004] or the definition of trilateration graphs in [Aspnes et al. 2006].
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Variant Input Data Applications

Hop Dist. Anchors RSS

SOM-V • – – virtual coordinates, geo-routing
SOM-A • • – absolute coord., sparse and anisotropic networks

SOM-R • • • abs. coord., sparse, dense and anisotropic networks.

Table II: Proposed localization schemes and their applications. Dots (•)
denote the information used by each variant of the scheme.

error of 0.25R to 0.5R, that is 25% to 50% the maximum communication range. If
these figures meet the application requirements, the estimated positions are useful
not only to locate the sensors, but also to implement services such as geographic
routing and target tracking. In fact, He et al. [2003] have shown the performance
of these services do not significantly decrease provided that the localization error is
below 0.4R–0.5R.
Since many applications tolerate approximate positions, range-free approaches

adapts well to localization in low-cost sensor networks. However, given the variety
of applications targeted by WSNs, the localization results may degrade significantly
depending on the deployment scenario at hand. Network configurations that may
cause the localization error to increase to values substantially higher than those
in Table I include: i) networks with limited connectivity or low percentage of an-
chor nodes, ii) dense networks where most of the nodes are in the radio range of
each other, iii) networks where large obstacles interfere with wireless communica-
tion and/or cause anisotropic layouts. We address the challenges of implementing
localization services in these heterogeneous scenarios by revising and extending a
previously presented range-free scheme that had already been shown to work well
in sparse topologies [Giorgetti et al. 2007].

1.2 Contributions and Paper’s Outline

The contribution of our research is three-fold. First, we describe a novel range-free
scheme based on a neural network formalism known as the Self-Organizing Map
(SOM). We present few variants of the solution that are designed to work with or
without anchor nodes, and additionally to use Received Signal Strength (RSS) infor-
mation (see Table II). Second, we perform extensive simulation to characterize the
performance of the solution and its variants in a variety of simulation scenarios. The
results are compared with those of the popular DV-HOP andMDS schemes, showing
significant improvements. Third, we analytically evaluate algorithm’s computation
and communication complexity, demonstrating that the solution is compatible with
the limited hardware resources of typical sensor nodes.
The proposed schemes compute the node positions by using the hop count dis-

tances between sensors and exploiting the topological ordering properties of the
SOM paradigm (see Section 2). Although other SOM-based localization schemes
have been presented, to the best of our knowledge, our work is the first to use SOM
for localization based on radio-connectivity (see Section 3) and the first to system-
atically evaluate the performance of SOM as a tool for sensor network localization.
The result of our approach is a simple yet powerful technique that we tested on a
wide range of localization scenarios. A summary of the main results follows.
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—Anchor-Free or Anchor-Based localization. The proposed method works
with or without anchor nodes. In Section 4 we show that the anchor-free ver-
sion (SOM-V) generates virtual coordinates that are effective when used for ge-
ographic routing. When anchor nodes are available, this information is used
during the training phase of the map (SOM-A) to generate absolute coordinates
(see Section 5). Using only four anchor nodes, SOM-A achieves a localization
error as low as 0.3R for networks with an average connectivity of five.

—Robustness to shadowing effects. In addition to the ideal radio model widely
used in the literature, we consider a more realistic propagation model that ac-
counts for the variability of the RF signal due to shadowing effects. We compare
the results to the Cramèr-Rao bound, and we show that, for low connectivity
values, SOM-A’s error is close to the theoretical bound (see Section 6). Fur-
thermore, SOM-A’s accuracy degrades more gracefully than that of MDS and
DV-HOP when strong shadowing of the signal alters the network connectivity.

—Localization in dense networks. When most of nodes are in the radio range
of each other (e.g. indoor applications or smart spaces), connectivity data carry
little information about the node positions, and range-free schemes achieve poor
performance2. In Section 7, we address this problem by using RSS information,
and we propose a solution (SOM-R) whose accuracy is independent from the
network connectivity. We validate the scheme using extensive simulations and
data from three in-field measurements with node in 2D and 3D spaces.

—Localization in anisotropic networks. We evaluate our SOM schemes on
topologies with anisotropic layout, which occur, for example, when sensors are
deployed in regions with obstacles (e.g. tall buildings). Localization in anisotropic
networks have been studied by several authors and have motivated the use of
specialized techniques [Shang and Ruml 2004; Lim and Hou 2005; Wang and
Xiao 2008]. In Section 8, we show that the SOM paradigm leads to a solution
that is naturally suited to localize anisotropic layouts. Without modification to
the base schemes, SOM-A and SOM-R achieve localization results comparable to
those obtained for regular topologies.

In Section 9, we evaluate the computational and communication complexity of the
solution. The SOM technique is a centralized method, but the result of our analysis
and benchmark tests on real hardware show that the lightweight solution is suitable
for execution on simple nodes with limited computational and memory resources.
We discuss related work in Section 10, with particular emphasis on the theoretical
aspects of the localization problem and the Self-Organizing Map technique.

2. SELF-ORGANIZING MAPS

Introduced in the early 80’s, the Self-Organizing Map (SOM) [Kohonen 1982; 1993]
is a neural network where each neuron contains a weight vector, also called model
or reference vector, that is updated during the training phase of the map. The neu-
rons are arranged in regular geometric structures, typically two-dimensional lattices
with rectangular or hexagonal patterns like the one in Figure 1a. As we will see in

2In the extreme case of a fully connected network, since all the nodes have the same neighbors,

they will eventually be associated to the same, or a similar, position.
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Fig. 1: a) Self-Organizing Map with hexagonal pattern; b, c) two steps of

the training algorithm.

the following sections, the structure of the map and the learning algorithm result
in a versatile architecture that has found numerous applications in the context of
exploratory data analysis, pattern recognition and vector quantization. An exten-
sive bibliography of SOM papers has been initially compiled by Kaski et al. [1998]
and successively updated by Oja et al. [2003].

2.1 Learning Algorithm

SOM implements unsupervised learning, meaning that the map is able to learn the
properties of the training set without the aid of labeled samples or reward func-
tions. Assuming that the information to learn is contained in a large and potentially
continuous input set with elements xi ∈ Rd, the map produces a compact represen-
tation of the training set using a finite number of reference vectors wj ∈ Rd. The
weights wj are initialized with random values and updated by executing multiple
iterations of the following three-step sequence:

(1) Sampling: A sample is extracted from the training set and presented to the
network. We let x(n) denote the sample at the current iteration.

(2) Competition: The sample x(n) is compared with the map weights using a
distance function. The neuron whose weight is closer to x(n) wins the compe-
tition and become the Best Matching Unit (BMU) (Figure 1b). If the distance
function is implemented using the Euclidean distance, the election rule is:

c = argmin
j
‖x(n)−wj(n)‖ , (1)

where c denotes the index of the BMU, and ‖·‖ is the Euclidean norm.
(3) Adaptation: The weight vector wc associated with the BMU is updated to
increase its similarity with the input sample. During the adaptation process,
the BMU activates nearby neurons (cooperative learning) allowing them to learn
some of the information contained in x(n). The update rule is:

wj(n + 1) = wj(n) + η hcj[x(n)−wj(n)], (2)

where η is the global learning rate parameter and hcj is the value of neighbor-
hood function that controls the adaptation for neurons close to the BMU (see
Figure 1c).

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Fig. 2: a) Exponential scheduling for the parameter σ; b) neighborhood

function at different number iterations; c) portion of a SOM showing the

map distances from the BMU.

2.1.1 Learning Parameters. For ensuring convergence, the learning rate η should
be computed using a function η(n) that decreases monotonically with the number
of iterations. Optimal choices of η(n) have been discussed in the literature [Mulier
and Cherkassky 1994; Kohonen 2001], however, in practice, the exact form of η(n)
is not a critical factor in the SOM technique.
The update rule (2) is also controlled by the value hcj that determines the amount

of information learned by neurons close to the BMU. The value hcj can be constant
for all the neurons within a given distance from BMU when a step neighborhood
function is used, or it can be computed using a smoothing kernel. As shown in
Figure 1c, a common choice is to calculate hcj by using a Gaussian function:

hcj = exp

(
−dmap(c, j)

2

2σ2

)
, (3)

where dmap(·, ·) measures the distance on the map between two neurons, and the
parameter σ controls the width of the smoothing kernel. As in the case of the learn-
ing rate, the parameter σ should be computed using a function σ(n) that decreases
monotonically. Large values of σ during the initial iterations result in a wide neigh-
borhood function that allows the map to quickly organize the neurons, while the
smaller values at the end of the training determine localized changes, allowing the
map to describe different input features. Figures 2a,b show an example of expo-
nential scheduling for the parameter σ and the resulting neighborhood function at
iteration n1 = 500 and n2 = 1500. Figure 2c shows part of a hexagonal SOM with
labels indicating the distances between the BMU and nearby neurons. Whenever
the neurons are updated, the map distance and the current value of σ are used to
compute the value hcj that controls the adaptation level of each weight.

2.2 Properties

We show a few SOM’s properties by using an example where samples from the
RGB color space in Figure 3a are used to train a 10 × 10 map. Both the samples
and the map weights are represented by vectors [ri, gi, bi] containing the the red,
blue and green color components. Figure 3b shows the initial SOM with weights
randomly assigned. After training the map with a few thousands samples from the
input space, the final weights assume the values shown in Figure 3c. The results
illustrate the following properties:

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Fig. 3: 10 × 10 SOM trained with samples from the RGB color space.

(1) SOM implements a projection technique: the three-dimensional input space is
mapped onto a two-dimensional surface.

(2) SOM implements a Vector Quantization (VQ) technique. In this case, 100
vectors were selected as representative values of a much larger input set.

(3) SOM generates topologically ordered results, in the sense that similar informa-
tion is mapped to nearby locations. This property emerges as a consequence of
the update rule: since adjacent neurons are subjected to similar weight changes,
they eventually converge to similar values.

3. LOCALIZATION USING SOMS

As seen in the previous section, a SOM can be used to process a large amount of
multi-dimensional information and represent it using a compact, low-dimensional
model. After training a map, the same election rule (1) discussed in Section 2.1
can be used to translate new samples into their corresponding codebooks (vector
quantization) or to project points onto a two-dimensional surface.
These properties has been used in the past to implement localization schemes for

mobile robots in unknown environments [Janet et al. 1997; Gerecke and Sharkey
1999]. As the robot explores a new space, the multisensory data collected by on-
board sensors are fed to a SOM that organizes them on the basis of their similitude.
Assuming that sensor readings are correlated with their positions, the SOM defines
a virtual map for the space just explored: the robot’s location is given by the BMU
that matches the current sensor readings. Ertin and Priddy [2005] have applied
the same concept to the localization problem in WSNs. In their work, synchronous
snapshots gathered from the sensors are used to train a SOM, producing a set of
weights that define a grid of so-called virtual sensors. The node coordinates are
approximated by the grid position of the virtual sensor that matches the actual
sensor measurements. The authors suggest possible application to target tracking.
A similar approach has been used by Sakurai et al. [2005] for human tracking in
an indoor space and by Xu et al. [2007] for localization of mobile users using signal
strength values from cellular base stations. Finally, Takizawa et al. [2006] have
proposed a range-based scheme based on an update rule similar to the one used by
SOM. These approaches are discussed in more details in Section 10.

3.1 Proposed Approach

Our work differs from previous SOM approaches because we do not assume the
availability of sensors readings or range estimates, and we do not use the concept

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Fig. 4: 5× 5 SOM trained with random samples from a 2D training set.

of virtual sensors. Our scheme uses proximity information derived by radio com-
munication and explicitly compute each node’s position during the map’s training.
The proposed solution is based on two simplifying assumptions:

(1) The sensor distribution is (approximately) uniform in the deployment area.

(2) Nodes that are radio neighbors are relatively close to each other.

We will successively relax these two assumptions by considering non uniform
deployments and more realistic propagation models, however 1) and 2) are useful
to illustrate how the SOM technique leads to an intuitive localization scheme.
Imagine that the deployment area is the square region in Figure 4a and that a

large number of points [xi, yi]
t are sampled inside this area and used to train a SOM,

say a 5 × 5 square map. Since the training samples and the map vectors have the
same structure, each weight defines a position in the 2D plane. Figure 4b shows the
values of the random weights, where segments of line are used to link the positions
of adjacent neurons. As the map is trained, the weights assume the values shown in
Figure 4c-f. Similarly to the example of Figure 3, the SOM weights approximate the
input distribution, and the weights of neurons that are close on the map converge to
similar values. We note that the coordinate assignment in Figure 4f is compatible
with the positions of an hypothetical 25 node WSN that meets the two assumptions
stated at the beginning of this section. More in general, we observe that the weights
of a SOM trained with points from a 2D uniform distribution can be used as an
approximation for the positions of a set of wireless nodes. For this purpose, the
number of neurons in the SOM needs to match the number of nodes in the WSN,
and the map has to be organized in such a way that neighbor nodes are associated
to adjacent neurons. In the next sections we formalize the use of SOM as a tool for
sensor network localization.

3.1.1 System Model. We consider a connected network with N nodes placed
at unknown locations. None of the nodes is equipped with hardware for position,
range or angle estimation, and no assumption is made regarding the availability of
sensors. We only assume that the nodes can determine their radio neighbors. We

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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let dhop(i, j) denote the hop distance, i.e. the minimum number of transmission
required to transfer a message from a node i to a node j.

3.1.2 Modified SOM Model. We compute the unknown node positions by using
a SOM with N neurons. Each neuron j corresponds to a sensor node and contains
a weight vector wj=[xj, yj]

t. This vector, initially picked at random, will eventually
contain the estimated location for the corresponding node. The map is trained using
the same algorithm described in Section 2.1, but we modify the neighborhood func-
tion to account for the spatial relationships among the sensor nodes. In particular,
we use a new neighborhood function where the map distance dmap is replaced by
dhop as shown below:

hcj = exp

(
−dhop(c, j)

2

2 σ2

)
. (4)

The use of dhop in place of dmap implicitly defines a lattice of neuron with a structure
that reflects the hop-count distance between each pair of sensor nodes (see Figure 5).
Having described the structure of the weights and the map, the last step involves

the choice of a proper training set. To understand how to generate the training
samples, we first note that since no reference points or range information are used,
the SOM’s results will be correct up to global translations, rotations, flipping or
scaling. This is a consequence of input used and not of the SOM technique; in
other words, any range-free, anchor-free scheme will generate similar results. While
these ambiguities might appear as a potential complication, in reality they simplify
the algorithm’s implementation. In fact, since the result will be expressed in an
arbitrarily coordinate system, we can train the SOM with random samples from an
arbitrary distribution (e.g. 0 ≤ x, y ≤ 1).
3.1.3 Localization Algorithm. Our algorithm is centralized, therefore each node

needs to communicate the list of its radio neighbors to the unit in charge of the
computation. Using this information, the hop-count distances between each pair
of nodes are computed by first representing the network as a graph, and then
applying the Dijkstra or Floyd algorithm. We assume that the distances are stored
in a matrix Dh with elements [dh]ij = dhop(i, j). The matrix Dh is the only input
parameter to the algorithm.
Algorithm 1 contains the pseudo-code of the localization scheme. The learning

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Algorithm 1: 2D SOM-V Localization

Input: matrix Dh: hop count distances among nodes
Output: [xj, yj] for j = 1, . . . , N : node positions

% Parameter Initialization

1: ηmax = 0.1; ηmin = 0.01;
2: σmax = max

i,j
{Dh}/2; σmin = 0.001

3: for all nodes n do
4: [xn, yn]

T = random()
5: end for

% Main Loop

6: for n = 1 : to n iter do
7: η = ηmax − n(ηmax − ηmin)/(n iter− 1)
8: σ = σmax − n(σmax − σmin)/(n iter− 1)
9: (x, y) = random()
10: c = argmin

j
‖(x, y) − (xj , yj)‖

11: for all network nodes j do
12: hcj = exp

(−Dh(c, j)2/2σ2)
13: [xj, yj] += η hcj([x, y]− [xj, yj])
14: end for
15: end for

parameter η(n) and the radius σ(n) are scheduled using a linear function that
decreases with the number of iterations (see lines 7 and 8). We refer to Algorithm 1
as SOM-V, because, as discussed in Section 4, it generates virtual coordinates. The
SOM-A and SOM-R versions are discussed in Section 5 and Section 7.

3.2 Simulation Model

The proposed localization schemes have been validated using extensive simulations
that were generated in the attempt to model realistic network configurations. Before
presenting the results of our experiments, we describe the simulation model used.

3.2.1 Placement Model. The simulation scenarios are generated according to a
noisy grid deployment model where the node positions correspond to the inter-
section points of a regular grid with rows and columns spaced by a factor r (see
Figure 6a). To capture the random nature of an ad-hoc deployment, each coordi-
nate is perturbed with samples from normal random variables: Δx,Δy ∼ N (0, σN).
We control the amount of noise by computing the value of σN as follows:

σN = PF r, (5)

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Fig. 6: a) The noisy grid model; b, c) two 100-node networks with different

perturbation factors.

where PF is the Perturbation Factor parameter (PF ≥ 0) that defines the magnitude
of the noise relative to the grid spacing r. Figures 6b,c show two 100 node topologies
with increasing values of the parameter PF.
In Section 5.4 we also consider topologies with node positions sampled from

independent and identically distributed (i.i.d) random variables, but we find the
noisy grid model more appropriate to describe typical WSN deployments. For
example, in applications such as environmental monitoring and precision agriculture
some control is usually exerted to ensure an approximate uniform coverage of the
monitored area. The noisy grid model also makes it easier to generate connected
networks with low connectivity (e.g. 4 or 5), while in the random model, the
probability of having connected networks rapidly goes to zero as we reduce the
communication range [Krishnamachari et al. 2002].

3.2.2 Connectivity Model. We initially define which nodes are radio neighbors
using an ideal radio model. If R denotes the maximum communication radius, then
two nodes are considered “connected” if their separation distance is less than R,
and “disconnected” otherwise. Although this model over-simplifies the nature of
wireless communication, the use of ideal connectivity is intuitive and facilitates
comparison with previously published results. A more realistic connectivity model
will be considered in Section 6.

3.2.3 Error Metric. We evaluate the performance of the proposed schemes by
computing the average localization error relative to the communication range:

Avg. Error (R) =
1

R

N∑
i=1

√
(x̃i − xi)2 + (ỹi − yi)2

N
, (6)

where N is the number of nodes, (x̃i, ỹi) are the estimated coordinates, (xi, yi) are
true node positions, and R is the communication range. In Section 6 we will use a
different error metric to facilitate comparison with the Cramér-Rao bound.

4. LOCALIZATION WITHOUT ANCHOR NODES: VIRTUAL COORDINATES

We refer to basic version of the algorithm described in Section 3.1.3 as SOM-V.
Since only connectivity information are used, SOM-V generates Virtual Coordi-
nates [Moscibroda et al. 2004] that describe the relative locations of nodes, in the
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Fig. 7: Routing path discovered by a geo-routing using the coordinates

produced by SOM-V (note: the two maps has been aligned using the three
reference marks on the plot, but this step is not necessary for routing).

sense that nodes with similar coordinates are physically close. Virtual coordinates,
which facilitate network tasks such as location-based queries and proximity-based
service discovery, have found prominent application in the area of geo-routing [Karp
and Kung 2000; Kuhn et al. 2003; Rao et al. 2003]. By knowing the relative node
positions, these schemes achieve efficient packet delivery without the memory over-
head of table-driven protocols or the latencies of on-demand approaches.
A direct comparison between virtual coordinates and the ground truth is not

possible3, therefore we evaluate the quality of the results by considering the perfor-
mance of a geo-routing scheme that uses the virtual maps produced by SOM-V. A
similar approach has been used to evaluate other range-free schemes, e.g. [Niculescu
and Nath 2001] and [He et al. 2003]. We consider a greedy routing scheme: given a
source and a destination pair, each intermediate node forwards the message to the
neighboring node closest to the destination. The selection rule is:

next hop = argmin
n
‖(xn, yn)− (xdest, ydest)‖ , (7)

where (xn, yn) are the virtual coordinates of the neighboring nodes, (xdest, ydest)
are those of the destination, and ‖·‖ denotes the usual Euclidean norm. This basic
scheme simply gives up if it is unable to get closer to the destination; however, it
defines an useful comparison baseline for more advanced strategies.
Figure 7a represents a 64 node network deployed in a square region with side

30 m and PF parameter equal to 25%. We show a routing example by first using
SOM-V to compute a virtual map of the network, and then using (7) to route a
message between two nodes in the corners of the map. Figure 7b shows the virtual
map together with routing path. The length of the path is equal to the minimum
hop count distances between the nodes.

3In the case of range-based localization algorithm that operates without anchor nodes, some
quality metrics based on the inter-node distances are available (e.g. see the Global Energy Ratio

(GER) in [Priyantha et al. 2003]). However, in the case of range-free localization, the results are
not only possibly rotated or flipped, but also arbitrarily scaled; therefore error metrics bases on

the inter-node distance are not applicable.
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plots (right) are almost completely overlapping for the two cases.

In a more exhaustive simulation experiment, we generate 50 topologies similar
to the one in Figure 7a with PF uniformly selected in the interval between 10%
and 50%. For each topology, we use (7) to route messages between 50 pairs of
randomly selected nodes. Figures 8a and 8b show the simulation results for different
connectivity levels obtained by varying the communication range R. The delivery
ratio of the scheme using the SOM-V coordinates is close to the value achieved when
using the true node positions, and it rapidly approaches 100% as the connectivity
increases. Wemeasured no substantial differences between the lengths of the routing
paths produced using SOM-V and the length of those computed using the true
coordinates, in fact the two plots are almost completely overlapping in Figure 8b.

5. ABSOLUTE COORDINATES

Virtual coordinates are useful to implement efficient packet routing and other net-
work tasks, but some WSNs require absolute positioning. For example, in a disaster
relief application knowing the sensor positions is necessary to accurately pinpoint
the location of an event and provide prompt assistance. To convert relative node
positions into absolute coordinates, at least three non-collinear anchor points are
needed for the two-dimensional case. When this information is available, the vir-
tual maps are aligned by applying a linear transformation that resolves rotational,
scaling and flipping ambiguities. This a-posteriori transformation can be used to
align the results of any anchor-free localization technique, including SOM-V. Our
basic algorithm, however, can be modified to include anchors’ information in the
training phase of the map. As we are about to show, this modification increases
the scheme’s accuracy for networks with low connectivity.

5.1 Exploiting Anchor Information: The SOM-A Scheme

The anchored version of the algorithm, SOM-A, is derived from the basic version by
applying three modifications: 1) Weights corresponding to anchors are initialized
with the true node positions and never updated. 2) Whenever an anchor node is
elected as BMU, the training sample at current iteration is replaced with the anchor’s
position. 3) The training points are sampled from a distribution whose values are

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.



14 · Giorgetti, Gupta and Manes

compatible with the deployment area’s coordinates. The first two modifications
ensure that weights corresponding to anchors remain in their position. The presence
of these fixed points facilitate the map organization during the initial iterations
and, assuming three or more anchors, allows SOM-A to generate maps that do
not require alignment. The last modification is required to ensure that weights
converge to meaningful values; differently from SOM-V, we are now working with
absolute coordinates and the input samples cannot be generated from an arbitrary
distribution.
In SOM-A, the sampling area is obtained by considering the rectangle enclosing

the anchor locations; we assume anchors located near the perimeter of the deploy-
ment area, preferably closer to the corners. Assuming that the network contains

M anchor nodes placed at locations [x
(k)
a , y

(k)
a ] for k = 1, . . . ,M , then, the train-

ing points xi = [xi, yi] are generated by sampling an uniform distribution in the
following intervals: {

xi ∈ [x(min)a −Δax; x(max)a +Δax]

yi ∈ [y(min)a −Δay; y(max)a +Δay],
(8)

where x
(min)
a = min{x(k)a }, x(max)a = max{x(k)a } and the values y(min)a and y

(max)
a

are computed similarly. The sampling area is expanded in each direction by factor
Δax and Δay to compensate for border effects that are notorious in the use of SOM
technique. Border effects arise because boundary neurons have fewer neighbors
than inner neurons; as a result, the weights along the perimeter of the map are
slightly contracted toward the center. In our case, we compensate for this effect by
expanding the sampling area. We experimentally determined an effective value for
Δax and Δax to be equal to

Δax =
x
(max)
a − x(min)a√
N +M − 1 and Δay =

y
(max)
a − y(min)a√
N +M − 1 and (9)

where N +M is the total number of network nodes (anchors and non-anchors).

5.2 Simulation Results: Comparison Between SOM-A and SOM-V

Figure 9 reports the average localization error for the same set of 50 networks used
in the previous section, assuming the presence of three and four anchors on the
corners of the map. The results of SOM-V, which are obtained using the a-posteriori
transformation described earlier, are compared against those of SOM-A. The plots
show that the anchored version is more effective in localizing network with low
connectivity. For networks with connectivity equal to four, SOM-A reduces the
error by 52% in the case of three anchor, and by 32% for the case of four anchors.
Although comparison with other schemes is deferred to Section 5.4, the SOM-A’s

results in Figure 9b show a localization error as low as 0.3R for networks with
average connectivity equal to five and using only 6.25% of anchors nodes (4 an-
chors out of 64 nodes). These figures suggest SOM-A as a suitable approach for
localization in low-cost deployments with low connectivity and a small percentage
of anchor nodes. These networks are likely to be exploited for applications such as
environmental monitoring and precision agriculture, where slowly varying signals
such as temperature and humidity are monitored over large areas. In these appli-
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Fig. 9: Average localization error for a set of 50 random topologies with 64
nodes deployed in a 30m × 30m square region.

cations, nodes are often placed in sparse configurations to reduce the installation
and maintenance costs.

5.3 Weight Initialization and Convergence

The results in Figure 9 were obtained using random initialization of the weights
and 2000 training samples. Existing SOM literature (e.g. [Kohonen 2001]) shows,
however, that different initialization strategies influence both the convergence speed
and the topological accuracy of the solution. Understanding the effect of the initial
weights and number of iterations on the final results is important because the
scheme may execute on nodes with limited computational resources.
We have repeated the previous simulations by varying the number of iterations

and using different initialization strategies. In addition to random initialization, we
consider the AFL scheme proposed by Priyantha et al. [2003], who used this ap-
proach to generate fold-free initial configurations for a spring-mass based algorithm,
and a simple scheme that initializes the weights by aligning them along a line. In
our previous work [Giorgetti et al. 2007], we found this heuristic to be effective in
reducing the occurrence of maps with large topological errors. We finally consider
a best-case scenario by initializing the weights with the true node positions.
Figure 10a shows the SOM-V’s error as a function of the number of iterations for

the case of network with average connectivity equal to four. We consider this case
because we found that the differences between alternative initialization schemes are
most noticeable for topologies with low connectivity. Even in this case, however,
the error plots converge to a similar value as the number of iterations increases over
1000. The weak correlation between the final error and the initial weights is a con-
sequence of training the map with a large neighborhood function. In our solution,
the initial standard deviation for the Gaussian kernel is equal to the radius of the
network: σmax = max (Dh) /2 (see Algorithm 1). Such large value causes strong
interactions among the neurons; therefore, during the initial iterations, the weight
vectors will assume a similar value close to the centroid of the input distribution,
regardless of the initial positions. In the case where neurons were already partially
ordered, the convergence speed of the map could be improved by using a smaller
value for σmax to preserve some of the initial information. However, we do not pur-
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Fig. 11: Localization example. If the neighborhood function’s initial radius

is not wide enough, SOM will occasionally produce incorrect results (case
c). This problem is avoided by using the values in Algorithm 1.

sue this strategy because using a narrower neighborhood function will occasionally
result in maps that are only partially ordered (see Figure 11).
Figure 10b shows the SOM-A’s error for the same set of simulations used in the

previous case. When the node positions are computed using SOM-A, the differences
between alternative initialization strategies become negligible even for a low num-
ber of iterations. Given the minimal differences, we only report the error obtained
using random initialization for networks with low and medium connectivity. The
error decreases similarly in both cases and stabilizes around 3000 iteration for con-
nectivity equal to four, and about 2000 iterations when the connectivity is equal to
ten. Since the execution time of the algorithm depends on the number of training
samples (i.e. the number of iterations), adjusting this parameter provides a mean
to optimize the trade-off between accuracy and resources spent (see Section 9).

5.4 Comparison With Other Schemes

We compare SOM-A with two popular range-free schemes, DV-HOP and Multi
Dimensional Scaling (MDS).
In the DV-HOP scheme proposed by Niculescu and Nath [2001; 2003], each node

computes its hop-count distance from the anchors present in the network. The
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Fig. 12: Average error achieved by SOM-A, DV-HOP, and MDS in localiz-
ing sets of 50 networks with increasing perturbation factors. All networks

have four anchors.

hop-count values are then converted into range estimates and used to determine
the node positions via multi-lateration. An approach similar to DV-HOP has been
proposed by Nagpal et al. [2003]; comparative studies between DV-HOP and other
schemes have been reported by He et al. [2003].
The other scheme used for comparison is MDS, a projection technique that maps

points from a high-dimensional set to a low-dimensional space. Traditionally used
in behavioral, econometric and social sciences, MDS has also been applied to the
localization problem in sensor networks. Initially proposed by Shang et al. [2003],
the method has been successively extended to work in a distributed fashion [Shang
and Ruml 2004; Ji and Zha 2004; Costa et al. 2005; Vivekanandan and Wong 2006].
In our tests, we evaluate a centralized version that uses the hop-count values as a
distance measure between pair of nodes (Isomap [Tenenbaum et al. 2000]).
Figure 12 shows the localization results for four sets of 50 random topologies

with 64 nodes deployed in a square region with side equal to 30m. Three of the
four sets were generated using the noisy grid model described in Section 3.2.1 with
PF = {10%, 25%, 50%}, while the last set contains networks with node positions
sampled from i.i.d. random variables. We note that networks with PF greater than
50% are qualitatively similar to random deployments.
The plots in Figure 12 show that the results generated by SOM-A and DV-

HOP have a similar trend, but SOM-A consistently produces a lower error. The

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.



18 · Giorgetti, Gupta and Manes

0 50 100 150 200
0

0.5

1

1.5

2

2.5

Network Size

A
vg

. E
rr

or
 (

R
)

Error vs. Network Size

 

 

(a) Connectivity = 5

0 100 200 300 400
0.2

0.3

0.4

0.5

0.6

0.7

Network Size

A
vg

. E
rr

or
 (

R
)

Error vs. Network Size

 

 

(b) Connectivity = 10

SOM-A

DVH

MDS

SO
M
-A

DVH
MDS

Fig. 13: Average error achieved by SOM, DV-HOP, and MDS in localizing
sets networks with increasing number of nodes and four anchors.

SOM-A’s results, which were are obtained using random initialization and 5000
training samples, are on average 27% to 45% more accurate than DV-HOP. The
differences are more marked for networks with perturbation factor equal to 10%.
In comparing the performance of SOM-A with MDS, the results depend on the

network connectivity. The difference are negligible for networks with connectivity
greater than ten, but SOM-A significantly outperforms MDS for sparse networks.
When the connectivity is equal to four or five, the SOM-A’s error is approximately
between 60% and 40% lower than the MDS’s error. In general, when the connec-
tivity is low, the hop-count distances are poor approximations of the true node dis-
tances, especially for nodes that are several hops away. Since MDS equally weights
all the available distances, including those with large hop values, the error in sparse
networks are usually large. SOM-A does not exhibit this drawback because nodes
that are several hops away have a weak effect on each other’s positions.
In a second set of experiments, we localize sets of 25 random networks with

increasing numbers of nodes and fixed connectivity values equal to five and ten (see
Figure 13). In the first case (connectivity = 5), we simulated random networks
with up to 200 nodes; given the low connectivity value, above this size it becomes
progressively more difficult to generate connected networks. In the second case
(connectivity = 10), we generated networks with up to 350 nodes. The SOM-A
technique ensures a localization error around 1.0R up to 200 nodes and connectivity
equal to five. If the connectivity is increased to ten, the error of SOM-A maintains
below 0.5R for networks up to 350 nodes. The results obtained for the other two
schemes are consistent with those published by Niculescu and Nath [2001; 2003] for
DV-HOP, and those reported by Shang et al [2003] for MDS. The error generated by
both schemes is significantly higher than the SOM-A’s error, especially for networks
with low connectivity.

6. LOCALIZATION IN NOISY ENVIRONMENTS

The ideal radio model used in previous sections provides an intuitive abstraction
useful in simulation studies, but it does not adequately capture the random nature
of wireless communication. Multi-path fading due to reflection, diffraction and
scattering of the RF signal causes variations in the received power and ultimately
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affects the capacity of the recipient to correctly decode a radio message. A more
realistic connectivity model that takes into account such variability has been pro-
posed by Patwari and Hero III [2003]. In this section, we adopt the same model to
simulate localization in “less than ideal” radio environments.

6.1 Log-Normal Shadowing Model and Threshold-based Connectivity

We assume that nodes collect Received Signal Strength (RSS) values by exchanging
several radio messages and that the measured values follow the log-normal shad-
owing model, a propagation model widely used in link budget analysis [Rappaport
1996]. Let Pij denote the average of the RSS values between node i and node j.
If the received power is measured in dB or dBm, then Pij is modeled as a random
variable with normal distribution:

Pij ∼ N (P̄ij, σdB) (10)

P̄ij = P0 + 10np log10

(
d0

dij

)
. (11)

In the expression above, P0 is the received power at a distance d0
4, np is the path

loss exponent and dij is the distance between nodes i and j. The standard deviation
σdB models the variability that is usually measured between different pairs of nodes.
Obstructions in the path between the nodes and reflections of the signal on nearby
obstacles can produce significant differences in the average received power for pairs
of nodes with the same separation distance, but installed in different locations.
According to the approach proposed by Patwari and Hero III [2003], we determine

if two nodes are neighbors by comparing the average signal strength against a fixed
threshold Pth:

cij =

{
0 if Pij < Pth (nodes disconnected)

1 if Pij ≥ Pth (nodes connected).
(12)

This model is more realistic than assuming ideal connectivity, and, in addition,
it also provides the basis for a more formal analysis of the results. Using the mea-
surement model defined by equations (10),(11) and (12), localization can be casted
as a parameter estimation problem and the results can be evaluated using Cramér-
Rao Bound (CRB) analysis. The CRB defines the minimum variance achievable
by any unbiased estimator5 that uses the measurements cij to compute the node
positions. Notably, the CRB provides a bound that is independent of the particular
algorithm used, but it only depends on the network topology and the parameters
of the measurement model. Several authors have used CRB analysis to evaluate
the performance of their schemes, mostly in the range-base case; see, for example,
[Patwari et al. 2003; Savvides et al. 2003; Moses et al. 2003]. Details on how to
derive the CRB for the case of connectivity measurements are reported by Patwari
and Hero III [2003].

4The reference value P0 at distance d0 is either measured or computed using the Friis’ free space
equation. For low-power radios, P0 is usually measured at d0 = 1m.
5If θ̂ is an estimate of the unknown parameter θ obtained using T, i.e. θ̂ = T (C), then the

estimator T is unbiased if E{θ̂} = θ.
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6.2 Simulation Results and Comparison with the CRB

We use the CRB as a comparison baseline for the error of SOM-A, MDS and DV-
HOP in localizing the network in Figure 14a. The average value Pij between each
pair of nodes were sampled according to the distribution (10) in fifty different trials
to simulate the deployment of the same topology in different environments. For
each scheme, we computed the average Root Mean Square (RMS) error defined as:

RMS Err =
1

N

N∑
i=1

√√√√ 1
K

K∑
k=1

(
xi − x̂(k)i

)2
+
(
yi − ŷ(k)i

)2
(13)

where K is the total number of repetitions (fifty in our case), N is the number of

nodes (excluded the anchors), (xi, yi) are the true node coordinates, and (x̂
(k)
i , ŷ

(k)
i )

are the coordinate computed using one of the localization algorithm in the kth trial.
In our simulation, the RMS Error is compared against the average value of the node
positions’ standard deviation computed using the CRB.
Before discussing the localization results, we note that the presence of the shad-

owing variance σ2dB in (10) can be regarded as a source of noise that disrupts
the dependence of Pij from the distance dij. In particular, the estimation error for
the node positions using RSS or connectivity measurements increases with the ratio
σdB/np [Patwari et al. 2003; Patwari and Hero III 2003]. For high values of the ratio
σdB/np, the RSS data are only loosely related to the distance, and the information
content associated with these measurements becomes marginal. Since RSS data are
used in (12) to define which nodes are neighbors, increasing the ratio σdB/np also
cause the localization error to increase when connectivity measurements are used.
Typical values for np are comprised between 2 and 4, while σdB usually varies be-

tween 3 and 12 dBm [Rappaport 1996]. We cover different scenarios by considering
three values for the ratio σdB/np: low noise (σdB/np = 3/4 dBm), medium noise
(σdB/np = 6/3 dBm) and high noise (σdB/np = 9/2 dBm). As shown in Section 7.3,
the values chosen are consistent with the values measured in real WSN testbeds.
The results are reported in Figure 14 for different connectivity values that are

achieved by changing the threshold Pth in (12). When the noise due to shadowing
effects is low (see Figure 14b), the RSS values and the connectivity information
are strongly correlated with distance, and the results are qualitatively similar to
those discussed for the ideal radio model. In this case, for low connectivity values,
SOM-A outperforms the other schemes, achieving a RMS error close to the bound.
For larger connectivity values, MDS produces more accurate results with an error
close to the CRB for connectivity comprised between 25 and 45. Again, the error of
DV-HOP increases similarly to that of SOM, but its performance is further removed
from the theoretical bound.
When the ratio between σdB/np increases (see Figures 14c,d), the noise due to

shadowing effects corrupts the connectivity information and cause the localization
error to increase (including the CRB). The effects are more severe for MDS that
performs worse than the other two solutions for high noise values (see Figures 14d).
The error generated by SOM, which is inherently a stochastic scheme, and there-
fore less sensitive to measurements errors, degrades more gracefully as the noise
increases.
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Fig. 14: a) 2D sample topology (red squares are anchor nodes); b,c,d)

average RMS error achieved by SOM-A, MDS and DV-HOP for different
values of the propagation model.

6.3 Localization in 1D and 3D spaces

In addition to the canonical application of localization in two dimensions, we also
evaluated the three schemes when nodes are placed in 1D and 3D spaces. WSNs
with linear configurations of nodes find application, for example, in traffic moni-
toring along highways and perimeter control, while 3D deployments are found in
asset tracking application for large warehouse or when instrumenting multistory
buildings for ubiquitous computing.

All the three localization algorithms can be easily modified to work in dimension
different from two. In particular, the only modifications required by the SOM
schemes are the use of weights with a different dimensionality and a corresponding
changes in the sampling space (points are sampled from a line for localization in
1D and from a cube for 3D localization).

We report the test topologies used and the results in Figure 15 for the case of
medium noise (σdB/np = 6/3 dBm). The result for other noise levels are qual-
itatively similar to the 2D case. The only exception are the result of the MDS
scheme, which produced large localization error in all the 1D configuration tested.
In contrast, both SOM and DV-HOP were capable of achieving an error close to
the bound for low connectivity values.
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Fig. 15: a,c) 1D and 3D sample topologies (red squares are anchor nodes);
b,c,d) average RMS error achieved by SOM-A, MDS, DV-HOP for different

noise values and comparison with the CRB value.

7. LOCALIZATION IN DENSE NETWORKS

Both simulation results and CRB analysis show a large localization error when the
connectivity reaches values close to the network size (see Figures 14 and 15). When
most of the nodes are in the radio range of each other, connectivity data are of
scarce utility in determining the node positions. In particular, in the extreme case
of a fully connected network, since all the nodes have the same neighbors, they
will be associated to the same, or a similar position. This drawback precludes
application of range-free approaches to WSNs with densely deployed nodes, which
are often found in indoor applications or smart spaces. In this section we introduce
a new variant (SOM-R) that achieves low localization error for highly connected
networks without sacrificing the original accuracy in localizing sparse networks.

7.1 The SOM-R algorithm

The negative effects of large connectivity values on the SOM schemes is easily
understood by recalling the update rule (2) discussed in Section 2.1. When the
network is highly connected, a large number of neurons will be within the same
distance from the BMU, therefore the weight updates will be similar for many nodes
and the map will not be able to accurately represent the input distribution.
In SOM-R we avoid the shortcomings of range-free localization in dense networks
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by using the RSS values to redefine the hop count distance dhop. The idea is to
augment the proximity information by sorting the one-hop neighbors on the basis
of their received power. In particular, we consider the attenuation of the RF signal
between a pair of nodes i and j expressed by the path loss PL:

PL(i, j) = P0 − Pij, (14)

where P0 and Pij have the same meaning defined in (10) and (11). Similarly to Pij,
PL is also a random variable with normal distribution; the expected value for PL,
is approximately zero for nodes whose separation distance is d0, and it increases
for nodes that are far apart. Here we assume that d0 is small compared to the
separation distances between the network nodes, therefore PL(i, j) ≥ 0, ∀i, j. If the
network is implemented using transceivers with a typical sensitivity Ps

6, we expect
the path loss to increase up to a maximum value PL-MAX = P0 − Ps . When such
value is reached, the RF power at the receiver will equal Ps and a further increment
in PL will cause the communication to fail with a high probability. Based on these
considerations, we define a new neighborhood function:

h(PL)cj = exp

(
−d

(PL)

hop (c, j)
2

2 σ2

)
. (15)

In the expression above, d(PL)hop (c, j) uses the path-loss values to measure the distance
between the BMU at index c and the a generic node/neurons at index j:

d(PL)hop (c, j) =

⎧⎨
⎩
PL(c, j)/PL-MAX if dhop(c, j) = 1

dhop(c, j) if dhop(c, j) 	= 1.
(16)

The modified hop-count distance is unchanged for nodes that are not in the radio
range of the BMU (dhop(c, j) 	= 1), but it has increased resolution for one-hop
neighbors, which are treated differently depending on their path loss value. A
PL(c, j) value close to zero will result in a small hop-count value (d

(PL)

hop ≈ 0), which
in turn will cause a strong interaction (h(PL)cj ≈ 1) between the BMU and node j.
On the other hand, when PL(i, j) is close to PL-MAX, the two nodes will be treated
as regular one-hop neighbors.
As mentioned in Section 2.1.1, the shape of the neighborhood function, and con-

sequently the choice of dhop, is not a critical factor in the SOM learning algorithm.
In using the PL values as shown above, our intent is not to accurately model the
distance between nodes, but simply to provide a mechanism to differentiate between
neurons that otherwise would be at the same distance from the BMU. Figure 16a
shows an example of a neighborhood function based on d(PL)hop .

The use of the d(PL)hop in place of the regular hop distance is the major difference
between SOM-R and the other versions of the scheme. The modified neighborhood
function (15) can be used both with SOM-V and SOM-A, but in the rest of our
work we only evaluate the anchored version. We finally note that when the modified

6The radio sensitivity is the minimum signal power that the transceiver is able to demodulate with
high probability. For example, transceivers compliant with the IEEE 802.15.4 should be able to

ensure a Packet Error Rate (PER) less than 1% for signal with power equal to -86dBm or above.
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Fig. 16: Average RMS error achieved by SOM-A, SOM-R, MDS and DVH.

map distance is used, it is beneficial to train the map with a larger learning factor,
therefore we use ηmax = 0.5 instead than ηmax = 0.1.

7.2 Simulation Results

Similarly to the previous section, we compute the RMS error over 50 localization
experiments on a 64-node network with four anchor nodes. Once again we account
for different radio environments by considering three noise levels previously used,
and we vary the connectivity level by changing the threshold used in (12). In this
case, the value Pth is used in place of the sensitivity Ps in the term PL-MAX in (15).
In general, if a threshold is not used and the value of Ps is unknown, the maximum
path loss value measured within the network can be used in place of PL-MAX.
Figure 16b,c,d show the simulation results. SOM-R produces remarkable im-

provements in accuracy, especially for higher values of network connectivity. In the
cases of low and medium noise, and for connectivity equal to 60, the RMS error is
respectively 85% and 65% lower than the value produced by SOM-A. In the case
of high noise (σdB/np = 9/2 dBm) the RMS’s error is about 25% lower than that
of SOM-A. Notably, SOM-R maintains the accuracy of SOM-A for sparse network,
and it produces meaningful localization results even in fully connected networks,
achieving results that are practically independent from the network connectivity.
Note that in Figure 16 the SOM-R’s error is sometimes lower than the CRB.

This is not in contradiction with the definition of the CRB, because SOM-R uses
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Fig. 17: The 44-node network derived from in-field RSS measurements

[Patwari et al. 2003] and published localization result for the same network.

not only connectivity constraints, but also the RSS information. Using raw RSS
data, however, is different from other approaches that use signal strength to es-
timate the inter-node distances. To produce such range estimates, for example
using a Maximum Likelihood Estimator (MLE) [Patwari et al. 2003], knowledge of
the propagation model parameters np, σdB is required

7, which in turns involves
collection of a large set of controlled measurements and adds to the costs of the lo-
calization service implemented. The SOM-R scheme can localize nodes deployment
in environments for which the parameters of the propagation model are unknown.

7.3 Localization Using RSS Data From Real Deployments

We complete the evaluation of SOM-R and the other SOM variants by presenting
localization results obtained from data collected in real WSN deployments.

7.3.1 Test Case 1: 44 Node Network, Medium Noise. We use the SOM-R scheme
to localize the nodes in Figure 17. The data for this network has been collected by
measuring the average RSS between pair of nodes in the cubicles of an office space.
The measurements are described by Patwari et al. [2003], and the data is freely
available on the web8. The nodes in this network are all in the radio range of each
other and the estimated parameters for propagation model are σdB = 3.91dBm,
and np = 2.3. The ratio σdB/np is equal to 1.7 dBm, close to the value we used to
simulate networks with medium noise (σdB/np = 6/3 dBm).
The SOM-R scheme is executed with 5000 samples from a uniform distribution

computed using (8). We repeat the localization experiment fifty times, changing
the seed of the random number generator each time. The average RMS error
achieved by the SOM-R is equal to 2.167m, with the best and worst localization
attempts that produced an error of 1.875m and 2.518m respectively. By comparing
the SOM-R’s error with previously published results (see Figure 17), we note that

7The basic MLE estimator only requires knowledge of the the parameter np (in addition to P0
and d0). To compute an unbiased version of the same estimator, knowledge of the parameter σdB
is also necessary [Patwari et al. 2003].
8WSN Localization Measurement Repository: http://www.eecs.umich.edu/~hero/localize.
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Fig. 18: Node deployments and localization results for test cases 2 and 3.

Red squares represent the anchor nodes used.

SOM-R achieves performance similar to those reported by Patwari et al. [2003] for
a centralize MLE estimation scheme. We remark that SOM-R’s results are obtained
without knowledge of the the parameters np and σdB.

7.3.2 Test Case 2: 46 Node Network - High Noise. In the second test case we use
data from a 46 node network deployed in an indoor space measuring approximately
14×10 m. The nodes use a 2.4 GHz transceiver and are arranged in a grid as shown
in Figure 18a. Some grid positions are missing due to node malfunctioning at the
moment of the test. The RSS data were collected by exchanging 100 messages
between each pair of nodes and computing the average of the data collected. The
deployment area, an empty office space with some metallic fixtures, was relatively
uncluttered, but we measured a significant level of variability in the RSS data,
presumably due to multi-path reflection from the metallic walls on the perimeter of
the area and due to different antenna orientation. In fact, the nodes for the test use
an integrated antenna and were randomly oriented. Using the measured data, we
estimated the propagation model parameters to be equal to σdB = 8.13 dBm and
np=2.74, resulting in a ratio close to the one we used to simulate noisy networks.
In absence of previously published results, we evaluate the performance of SOM-A
and SOM-R by comparing the localization error against those of MDS and DVH.
Figure 18b shows the localization results for different connectivity levels that were
obtained by varying the threshold Pth. The results are qualitatively similar to those
obtained in simulating networks with high ratio σdB/np.
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7.3.3 Test Case 3: 38 Node Network in a 3D Space - High Noise. In the last test
case we use RSS measurements from a 38 node network deployed in an indoor 3D
space (see Figure 18c). The data is freely available on the ENALAB web site9 and
the measurements are discussed in detail in [Lymberopoulos et al. 2006]. Similarly
to the previous case, Lymberopoulos et al. found different antenna orientations and
multi-path to be source of significant variability in the RSS data, which have low
correlation with the distance. Figure 18d shows the localization error for the four
scheme considered. Again, we note that error of SOM-A and SOM-R is significantly
lower than the error of DV-HOP and MDS.

8. LOCALIZATION IN ANISOTROPIC DEPLOYMENTS

Anisotropic layouts result from deploying sensors in regions with obstacles (e.g.
tall buildings), or when localized node failures lead to “holes” in otherwise isotropic
topologies. It is known that localization in anisotropic networks is challenging for
schemes that use the hop count values as an approximation of the true node distance
(e.g. MDS and DV-HOPS). In fact, while this approach works well when the path
connecting any two nodes lies approximately on a straight line, it generates large
errors in presence of obstacles because any two nodes can be physically close even if
their hop distance is large. The large error in the case of anisotropic networks has
motivated alternative approaches. For example, some schemes use MDS to compute
small local maps that are then stitched together into a global map [Shang and Ruml
2004; Ji and Zha 2004]. Although this approach yields to an interesting distributed
scheme, the process of map stitching increases the complexity of the solution and
is susceptible to large errors when the connectivity is low. If some components of
the network are not rigidly connected, the sub-maps may get stitched together with
the wrong relative orientation [Moore et al. 2004].
Here we argue that it would be useful to have a scheme capable of localizing irreg-

ular networks without having to partition the map and encumber the complexity of
map stitching. The SOM schemes is potentially well-suited for this task because its
learning algorithm is designed to mainly exploit the interaction of nodes within a
short hop distance, while nodes that are several hops away have a weak interaction
and do not directly influence each other.
We evaluate the performance of the proposed schemes by generating simulation

scenarios with few large obstacles blocking the communication between nodes. Two
sample topologies are shown in Figures 19a and 19b. We will refer to these two
simulation scenarios as “C” and “W” deployments. For each topology, we generate
50 networks using the same noisy grid model described in Section 3.2.1, with the
only difference that nodes were not allowed in correspondence of the obstacles. The
connectivity information were obtained by first sampling pairs of RSS values using
the shadowing model of Section 6 with parameters np = 4, σdB = 3dBm, and then
selecting a threshold as in (12). We use two different threshold values, resulting in
half the networks having connectivity around 6.5 and the other half above 12. For
each network, localization was repeated 25 times using different realization of the
RSS values; the results of these repetitions were used to compute the RMS error
and compare it with the CRB.

9http://www.eng.yale.edu/enalab/XYZ/data_set_1.htm
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Fig. 19: Sample anisotropic topologies. Red squares are the anchor nodes.

"C" conn = 6.68 "C" conn = 12.49 "W" conn = 6.69 "W" conn = 12.92

Scheme Err(R) RMS Err(R) RMS Err(R) RMS Err(R) RMS

MDS 1.44 37.0 m 1.12 45.7 m 1.15 28.8 m 0.69 27.2 m
DVH 0.86 20.3 m 0.63 22.1 m 0.74 18.7 m 0.53 21.0 m

SOM-A 0.31 7.7 m 0.27 9.5 m 0.31 7.9 m 0.24 9.9 m
SOM-R 0.29 7.3 m 0.21 7.8 m 0.28 7.3 m 0.18 7.4 m

CRB 6.8 m 7.0 m 7.8 m 6.5 m

Table III: Localization Results in anisotropic networks.

Table III show the simulation results; in addition to the average RMS error, we
also report the average localization error relative to the communication range R10.
SOM-A’s and SOM-R’s results were computed using the same training distribution
described in Section 5.1 (i.e. without knowledge of the obstacles’ presence.)
The results shows that SOM-A achieves an average error comparable to the case

of uniform networks. On average, the SOM-A’s error is 75% and 60% lower than
the error of MDS and DVH respectively. The errors for MDS and DVH on the “C”
topology are comparable with previously published results reported by Vivekanan-
dan and Wong [2006] and Niculescu and Nath [2001] for the same type of network.
SOM-R generates an additional 15% error reduction with respect to SOM-A.
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Fig. 20: Sample results for anisotropic layouts: the SOM-A algorithm re-
duces the average localization error of 75% with respect to MDS.

10The maximum range was computed using the parameter of the shadowing model and the thresh-

old, so it should be intended in the sense of expected maximum communication range.
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9. COMPUTATIONAL COMPLEXITY

Although all the three variants proposed are centralized localization schemes, we
show that the low communication and computation requirements make them suit-
able for sensor networks were nodes have limited resources.
The SOM algorithms operate on the basis of connectivity information, therefore

each sensor needs to communicate the set of its radio neighbors to the unit in
charge of the computation. Assuming that node IDs are coded using two bytes (up
to 65536 nodes), the information can be transmitted using a fairly small size radio
messages. For example, in a network where the average connectivity is 7, only 14
bytes need to be transmitted by each node, and the total traffic can be reduced by
means of in-network data aggregation techniques.
Having received the neighbor sets, the data is used to generate the adjacency

matrix of the undirected network graph requiring [N(N−1)/2]/8 bytes, and then to
compute the Dh matrix with the hop count distances between nodes. The solution
is obtained by repeating N executions of the popular Dijkstra’s algorithm or using
the Floyd’s scheme. The complexity is O(N3) in both cases, while the table needs
enough storage space for N(N − 1)/2 elements. The memory requirements for
this table can be reduced by taking into account the maximum hop count distance
between any two nodes (i.e. the network diameter). Our simulations show, for
example, that in 100 node networks with connectivity equal to six the diameter is
usually lower than 16. Using 4 bits to code the hop-count distances, the size of
the table is reduced to N(N − 1)/4 bytes of memory. Note that, even if some hop
distances were larger than 16, replacing the actual value with the upper limit does
not have a noticeable impact on the algorithm because the interactions between
units far from each other are weak. Finally, we need to reserve the memory space
to store the node coordinates (i.e. the SOM weights). Assuming quantized values
represented with 2 bytes, the total occupation is 4N bytes.
As for the computational complexity of our approach, the iterative solution allows

a trade-off between accuracy and execution time (see Section 5.3). Each iteration
requires N comparisons to compute the BMU, and the application of the update rule
(2) to the map weights. Considering that the radius of the neighborhood function
shrinks from a value initially equal to the network radius and then goes to zero,
the average number of weight updates is approximately N/2. We note that, as
the width σ of the neighborhood function shrinks, the running time of our solution
could be further improved by only applying the update rule to those weights that
are close to the BMU.
It takes about 0.3 seconds to localize a 100 node network by executing 5000 iter-

ations of MATLAB code on a PC with a 2.66 GHz, however, we also implemented
a TinyOS11 version to test the scheme on sensor nodes. We execute the code on
TelosB [Polastre et al. 2005], a popular COTS sensor node with a 16-bit RISC
microcontroller featuring 10KB of RAM, 48KB and working at the frequency of
8MHz. The algorithm was implemented as reported in Section 3.1.3, with the only
exception that the Gaussian neighborhood function was replaced with a triangular
function, which produces similar results using much less computation. Table IV

11http://www.tinyos.net
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N. Nodes Memory Exec. time Dijkstra Exec. time for 1000 iter.

36 0.42 KB 1 sec 62 sec

64 1.48 KB 6 sec 102 sec
100 3.42 KB 22 sec 156 sec

Table IV: Memory requirements and execution time of the SOM-A algo-
rithm on a TelosB node.

reports the memory occupation of the data structures described above and the ex-
ecution time to compute the Dh matrix and then to perform 1000 iterations of the
localization algorithm. Even using these highly constrained nodes, it only takes
about 3 minutes to localize a network with 100 nodes. During the computation,
the radio can be turned off and the microcontroller draws only few milliamp of cur-
rent, with negligible impact on the energy budget of the sensor node. We conclude
by noting that since the algorithm runs with limited overhead on the same hard-
ware used to implement the sensing task, the system reliability will be improved by
simply running the computation on a few back-up units.

10. RELATED WORK

Relevant related work has been discussed through the previous sections. Gen-
eral survey papers on localization schemes and positioning techniques have been
proposed by several authors (e.g [Hightower and Borriello 2001; Langendoen and
Reijers 2003]) and several books on WSNs contain chapters on localization (e.g.
[Zhao and Guibas 2004; Raghavendra et al. 2004; Beutel 2005; Stoleru et al. 2007]).
In this section we focus on previous localization research using SOM and we discuss
the relation between the theoretical aspects of localization and convergence results
available for self-organizing maps.

10.1 Localization using SOM

Ertin and Priddy [2005] have used SOM to solve the localization problem in WSNs.
Their model is based on the assumption that the network contains N nodes capa-
ble of sensing a common phenomena, such as acoustic or seismic, at synchronized
time steps. A further assumption is that the correlation between sensor readings
si and sj from nodes i and j is a function only of the distance between nodes:
E[sisj ] = f(‖pi − pj‖), where pi = (xi, yi) and pj = (xj, yj) are the physical loca-
tion of the two sensors. The input samples used to train the SOM are obtained by

concatenating the sensor reading collected at each time step: xn = [s
(n)
1 , . . . , s

(n)
N ],

where s
(n)
i is the output of sensor i at time step n. Once the map has been trained

with the samples xn, each neuron contains a weight vector wj = [wj1, . . . , wjN ]
whose dimensionality is equal to the number of nodes in the network. At this point
there is not a direct correspondence between the neurons and the position of the
sensor nodes yet, however, the authors suggest that each sensor i can be associated
with the neuron j having the largest component wji. The relative position of such
neuron j in the lattice of neurons defines the virtual coordinates of sensor i. No
numerical results are provided to characterize the accuracy of the solution, but the
author qualitatively describe a possible application to the target tracking problem.
A similar approach has been used by Sakurai et al. [2005] to implement a tracking
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application for people moving inside a building. Similarly to the previous case, the
input samples used to train the map contain the value sensed by the N sensors

installed in the monitored area: xn = [s
(n)
1 , . . . , s

(n)
N ] . In this application the SOM

is not used to compute the physical location, but to create a logical map where
sensor readings with similar values are grouped together. Again, only a qualitative
analysis of the result is presented. Numerical results are instead provided by Xu et
al. [2007], who use the SOM to track the movement of people in large outdoor areas
using signal strength values measured from nearby cellular stations. In their case
the training samples are given by the RSS value collected by the mobile users as
they move among the cells covered by several base-stations. This approach and the
others described above are substantially different from the scheme presented in this
work and have more resemblance with other fingerprinting localization techniques
(see, for example [Bahl and Padmanabhan 2000; Lorincz and Welsh 2007]).

Takizawa et al. [2006] propose a distributed range-based scheme that uses some
of the concepts found in the SOM technique. In this approach, the nodes use a
modified version of the update rule (2) discussed in Section 2.1 to iteratively update
their position. Interaction between nodes is limited to 1-hop and 2-hop neighbors.
This method is similar to the refinement phase used in several range-based schemes
(see, for example [Savvides et al. 2002; Savarese et al. 2002]), and it is susceptible
to convergence to local minima. An heuristic solution is proposed to avoid this
situation. Paladina et al. [2007] also propose a distributed localization scheme
based on the use of SOM. Their model assumes nodes deployed in a regular grid,
therefore each node can be thought as positioned in the center of a small 3×3 SOM
where the remaining eight neurons contain the position of the surrounding one-hop
neighbors. Each node uses this small SOM to process the the positions transmitted
by its neighbors and compute its own position, which is then propagated to the
remaining nodes.

Our approach is analogous to previous applications of the SOM technique to
graph drawing [Meyer 1998; Bonabeau and Henaux 1998], a branch of graph theory
that deals with the visualization of complex graphs. The graph layout problem is
similar to localization in the sense that it also seeks to find a coordinate assignment
such that vertices connected by edges are positioned close to each other. But, while
the evaluation of a graph layout is mostly based on aesthetic factors (e.g. uniform
distribution of nodes and edge lengths, separation between graph elements, number
of edge crossing), the results of the localization assignment are directly comparable
with the true sensor locations. In this work we explicitly focused on using SOM to
produce maps with low localization error.

Finally, we note that the SOM-R described in Section 7 shares some similitude
with other range-free schemes where RSS values have been used to complement
connectivity information. For example, in the PRI scheme proposed by Li et al.
[2004] the received signal strength is used to compute “sub-hops” by sorting the
one-hop neighbors, and Liu et al. [2004] compute the node positions as intersection
of concentric rings derived from the RSS. The SOM-R scheme also share some
resemblance with the work of Nguyen et al. [2005] who used RSS value collected
between the nodes to train a kernel-based classifier. However, while the classifier
only detects if a node is contained in a given region or not, the SOM technique
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implements a more straightforward approach to localization that produces explicit
position estimates as a consequence of the training phase of the map.

10.2 Theoretical results

Network localization is a challenging problem that has been actively investigated
over the last few years. In addition, since a wireless network can be represented
as a graph, relevant results from established fields such as graph theory and com-
putational geometry have helped in putting the problem on firm theoretical basis.
As discussed in the introduction, the problem of computing the sensor positions is
formally equivalent to the one of embedding a graph in a Euclidean space, which
consists in computing the positions of a set vertex using constraints imposed by
the length of the edges. This is a NP-hard problem even when accurate internode
distances are available [Saxe 1979]. More recently, a number of authors have built
on this result to characterize the complexity of the problem specifically for sensor
networks, which might contains anchor nodes and where the measurments are likely
to be affected by noise. Theoretical results are available for the cases where node
have to be localized using ranges [Aspnes et al. 2004; Basu et al. 2006] and angle
estimates [Bruck et al. 2005]. In all the case presented the problem is still NP-hard,
unless the distance estimates are noise-free and are available for a large-number of
nodes [Biswas and Ye 2004; Aspnes et al. 2006]. In addition to the computational
complexity of the problem, the solution might be ambiguous unless enough range
measurements are available. The characterization of uniquely localizable networks
is a problem of particular importance in sensor networks because nodes have limited
sensing range and measurements are only possible with a few nearby nodes. The
problem of a unique localization solution and its relation to theory of rigid graphs
has been specifically addressed in a number of works [Eren et al. 2004; Moore et al.
2004; Goldenberg et al. 2005; Aspnes et al. 2006].
Several theoretical results are also specifically available for range-free localization,

which is the application considered in our work. An overview of the most relevant
theoretical results has been presented by O’Dell et al. [2005]. In particular, a net-
work with connectivity constraints can be modeled as a Unit Disk Graph (UDG)12

and, similar to the previous case, the localization problem can be posed as one of
embedding an UDG in an Euclidean space. This problem is NP-Complete in one
dimension and NP-hard in two dimensions [Breu and Kirkpatrick 1998]. Recently,
the problem has been proved to be APX-hard [Lotker et al. 2004], meaning that
the solution cannot even be efficiently approximated. In fact, there exists node
configurations for which even an optimal algorithm cannot produce an embedding
with quality better than

√
3/2 [Kuhn et al. 2004]. The only known algorithm with

bounded error has been proposed by Moscibroda et al. [2004], who addressed the
problem of localization using connectivity constraints (ideal disk connectivity).
The results reported above help in understanding the intrinsic difficulty in com-

puting the node positions and why, in the general case, only approximate solutions
are available. The merit of applying the SOM technique to the localization prob-
lem is that it provides a low-complexity solution that has been shown to produce
accurate localization results in different localization scenarios. Regarding the SOM

12A Unit Disk Graph is a graph where two node are connected iff their distance is less than 1.
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technique itself, despite the attention received, self-organizing maps algorithm have
proven to be very resistant to mathematical characterization and theoretical results
are only available for the case of one-dimensional configuration of neurons. The first
formal proof on ordering and convergence properties of SOM has been presented by
Cottrell and Fort [1987] for the case of uniform distribution and step-neighborhood
function. The proof has been extended to more general neighborhood function by
Fort and Pages [1995], but theoretical results for the two-dimensional case are still
incomplete [Cottrell et al. 1998]. However, we note that a lack of formal proof in
the general case does not necessarily penalize this approach with respect to other
techniques. Given the possible ambiguity in the localization results and additional
uncertainty caused by the noise in the measurements, even a solution with proven
convergence properties would not be guaranteed to converge to the ground truth.
At present, simulations and test-field experimentations are the only tool available
to compare the performance of different localization schemes working under realis-
tic system configurations. This is also the approach we have followed in developing
our research.

11. CONCLUSIONS

We proposed a centralized algorithm to solve the localization problem for WSNs.
The algorithm is proposed in different variants that are able to produce accurate
results in situations where other approaches have a poor performance. In addition,
the light-weight implementation of the scheme is suitable for resource-poor nodes
commonly found in WSN applications.
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